
Introduction to Docker
Version: a2622f1

An Open Platform to Build, Ship, and Run Distributed Applications

Docker Fundamentals a2622f1 1 © 2015 Docker Inc

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Logistics

• Updated copy of the slides: http://lisa.dckr.info/

• I'm Jérôme Petazzoni

• I work for Docker Inc.

• You should have a little piece of paper,
with your training VM IP address + credentials

• Can't find the paper? Come get one here!

• We will make a break halfway through

• Don't hesitate to use the LISA Slack (#docker channel)

• This will be fast-paced, but DON'T PANIC

• To contact me: jerome@docker.com / Twitter: @jpetazzo

Those slides were made possible by Leon Licht, Markus Meinhardt, Ninette, Yetti
Messner, and a plethora of other great artist of the Berlin techno music scene, alongside
with what is probably an unhealthy amount of Club Mate.

Docker Fundamentals a2622f1 2 © 2015 Docker Inc

http://lisa.dckr.info/
mailto:jerome@docker.com


Part 1

• About Docker

• Your training Virtual Machine

• Install Docker

• Our First Containers

• Background Containers

• Restarting and Attaching to Containers

• Understanding Docker Images

• Building Docker images

• A quick word about the Docker Hub

Docker Fundamentals a2622f1 3 © 2015 Docker Inc



Part 2

• Naming and inspecting containers

• Container Networking Basics

• Local Development Work flow with Docker

• Working with Volumes

• Connecting Containers

• Ambassadors

• Compose For Development Stacks

Docker Fundamentals a2622f1 4 © 2015 Docker Inc



Extra material

• Advanced Dockerfiles

• Security

• Dealing with Vulnerabilities

• Securing Docker with TLS

• The Docker API

Docker Fundamentals a2622f1 5 © 2015 Docker Inc



Table of Contents
About Docker.....................................................................................................................................................................................................7
Your training Virtual Machine................................................................................................................................................................... 37
Install Docker .................................................................................................................................................................................................. 42
Our First Containers..................................................................................................................................................................................... 57
Background Containers ..............................................................................................................................................................................68
Restarting and Attaching to Containers..............................................................................................................................................80
Understanding Docker Images................................................................................................................................................................87
Building Images Interactively ................................................................................................................................................................. 110
Building Docker images............................................................................................................................................................................120
CMD and ENTRYPOINT ........................................................................................................................................................................... 132
Copying files during the build ................................................................................................................................................................ 145
A quick word about the Docker Hub................................................................................................................................................... 152
Naming and inspecting containers ...................................................................................................................................................... 154
Container Networking Basics ................................................................................................................................................................. 163
Local Development Workflow with Docker.................................................................................................................................... 190
Working with Volumes.............................................................................................................................................................................209
Connecting Containers............................................................................................................................................................................ 228
Ambassadors ............................................................................................................................................................................................... 245
Compose For Development Stacks ....................................................................................................................................................253
Advanced Dockerfiles ..............................................................................................................................................................................270
Security ...........................................................................................................................................................................................................297
Dealing with Vulnerabilities ..................................................................................................................................................................... 311
Securing Docker with TLS ........................................................................................................................................................................317
The Docker API ........................................................................................................................................................................................... 329
Course Conclusion......................................................................................................................................................................................347

Docker Fundamentals a2622f1 6 © 2015 Docker Inc



About Docker

About Docker

Docker Fundamentals a2622f1 7 © 2015 Docker Inc



Lesson 1: Docker 30,000ft overview
Objectives

In this lesson, we will learn about:

• Docker (the Open Source project)

• Docker Inc. (the company)

• Containers (how and why they are useful)

We won't actually run Docker or containers in this chapter (yet!).

Don't worry, we will get to that fast enough!

About Docker

Docker Fundamentals a2622f1 8 © 2015 Docker Inc



The origins of the Docker Project

• dotCloud was operating a PaaS, using a custom container engine.

• This engine was based on OpenVZ (and later, LXC) and AUFS.

• It started (circa 2008) as a single Python script.

• By 2012, the engine had multiple (~10) Python components.
(and ~100 other micro-services!)

• End of 2012, dotCloud refactors this container engine.

• The codename for this project is "Docker."

About Docker

Docker Fundamentals a2622f1 9 © 2015 Docker Inc



First public release

• March 2013, PyCon, Santa Clara:
"Docker" is shown to a public audience for the first time.

• It is released with an open source license.

• Very positive reactions and feedback!

• The dotCloud team progressively shifts to Docker development.

• The same year, dotCloud changes name to Docker.

• In 2014, the PaaS activity is sold.

About Docker

Docker Fundamentals a2622f1 10 © 2015 Docker Inc



The Docker Project

• The initial container engine is now known as "Docker Engine."

• Other tools have been added:

• Docker Compose (formerly "Fig")

• Docker Machine

• Docker Swarm

• Kitematic (acquisition)

• Tutum (recent acquisition)

About Docker

Docker Fundamentals a2622f1 11 © 2015 Docker Inc



About Docker Inc.

• Founded in 2009.

• Formerly dotCloud Inc.

• Primary sponsor of the Docker Project.

• Hires maintainers and contributors.

• Provides infrastructure for the project.

• Runs the Docker Hub.

• HQ in San Francisco.

• Backed by more than 100M in venture capital.

About Docker

Docker Fundamentals a2622f1 12 © 2015 Docker Inc



How does Docker Inc. make money?

• Docker Hub has free and paid services.

• DTR (Docker Trusted Registry).

• Enterprise support for Engine and other products.

• Training and professional services.

About Docker

Docker Fundamentals a2622f1 13 © 2015 Docker Inc



OK... Why the buzz around containers?

• The software industry has changed.

• Before:

• monolithic applications

• long development cycles

• slowly scaling up

• Now:

• decoupled services

• fast, iterative improvements

• quickly scaling out

About Docker

Docker Fundamentals a2622f1 14 © 2015 Docker Inc



Deployment becomes very complex

• Many different stacks.

• Many different targets.

About Docker

Docker Fundamentals a2622f1 15 © 2015 Docker Inc



The deployment problem

About Docker

Docker Fundamentals a2622f1 16 © 2015 Docker Inc



The Matrix from Hell

About Docker

Docker Fundamentals a2622f1 17 © 2015 Docker Inc



An inspiration and some ancient history!

About Docker

Docker Fundamentals a2622f1 18 © 2015 Docker Inc



Intermodal shipping containers

About Docker

Docker Fundamentals a2622f1 19 © 2015 Docker Inc



This spawned a Shipping Container Ecosystem!

About Docker

Docker Fundamentals a2622f1 20 © 2015 Docker Inc



A shipping container system for applications

About Docker

Docker Fundamentals a2622f1 21 © 2015 Docker Inc



Eliminate the matrix from Hell

About Docker

Docker Fundamentals a2622f1 22 © 2015 Docker Inc



From lightweight VMs to application containers

• Containers have been around for a very long time.
(c.f. LXC, Solaris Zones, BSD Jails, LPAR...)

• Why are they trending now?

• What does Docker bring to the table?

About Docker

Docker Fundamentals a2622f1 23 © 2015 Docker Inc



Step 1: containers as lightweight VMs

About Docker

Docker Fundamentals a2622f1 24 © 2015 Docker Inc



Less overhead!

• Users: hosting providers. PaaS industry.

• Highly specialized audience with strong ops culture.

About Docker

Docker Fundamentals a2622f1 25 © 2015 Docker Inc



Step 2: commoditization of containers

About Docker

Docker Fundamentals a2622f1 26 © 2015 Docker Inc



Containers before Docker

• No standardized exchange format.
(No, a rootfs tarball is not a format!)

• Containers are hard to use for developers.
(Where's the equivalent of docker run debian?)

• No re-usable components, APIs, tools.
(At best: VM abstractions, e.g. libvirt.)

Analogy:

• Shipping containers are not just steel boxes.

• They are steel boxes that are a standard size,
with the same hooks and holes.

About Docker

Docker Fundamentals a2622f1 27 © 2015 Docker Inc



Containers after Docker

• Standardize the container format, because containers were not portable.

• Make containers easy to use for developers.

• Emphasis on re-usable components, APIs, ecosystem of standard tools.

• Improvement over ad-hoc, in-house, specific tools.

About Docker

Docker Fundamentals a2622f1 28 © 2015 Docker Inc



Positive feedback loop

• In 2013, the technology under containers (cgroups, namespaces, copy-
on-write storage...) had many blind spots.

• The growing popularity of Docker and containers exposed many bugs.

• As a result, those bugs were fixed, resulting in better stability for
containers.

• Any decent hosting/cloud provider can run containers today.

• Containers become a great tool to deploy/move workloads to/from on-
prem/cloud.

About Docker

Docker Fundamentals a2622f1 29 © 2015 Docker Inc



Step 3: shipping containers efficiently

About Docker

Docker Fundamentals a2622f1 30 © 2015 Docker Inc



Before Docker

• Ship packages: deb, rpm, gem, jar...

• Dependency hell.

• "Works on my machine."

• Base deployment often done from scratch (debootstrap...) and unreliable.

About Docker

Docker Fundamentals a2622f1 31 © 2015 Docker Inc



After Docker

• Ship container images with all their dependencies.

• Break image into layers.

• Only ship layers that have changed.

• Save disk, network, memory usage.

About Docker

Docker Fundamentals a2622f1 32 © 2015 Docker Inc



Example
Layers:

• CentOS

• JRE

• Tomcat

• Dependencies

• Application JAR

• Configuration

About Docker

Docker Fundamentals a2622f1 33 © 2015 Docker Inc



Step 4: containers in a modern software factory

About Docker

Docker Fundamentals a2622f1 34 © 2015 Docker Inc



Container image as build artifact
The same container can go from dev, to test, to QA, to prod.

About Docker

Docker Fundamentals a2622f1 35 © 2015 Docker Inc



Technical & cultural revolution: separation of concerns

About Docker

Docker Fundamentals a2622f1 36 © 2015 Docker Inc



Your training Virtual Machine

Your training Virtual Machine

Docker Fundamentals a2622f1 37 © 2015 Docker Inc



Lesson 2: Your training Virtual Machine
Objectives

In this section, we will see how to use your training Virtual Machine.

If you are following this course as part of an official Docker training or workshop, you
have been given credentials to connect to your own private Docker VM.

If you are following this course on your own, without access to an official training Virtual
Machine, just skip this lesson, and check "Installing Docker" instead.

Your training Virtual Machine

Docker Fundamentals a2622f1 38 © 2015 Docker Inc



Your training Virtual Machine
This section assumes that you are following this course as part of an official Docker
training or workshop, and have been given credentials to connect to your own private
Docker VM.

This VM has been created specifically for you, just before the training.

It comes pre-installed with the latest and shiniest version of Docker, as well as some
useful tools.

It will stay up and running for the whole training, but it will be destroyed shortly after
the training.

Your training Virtual Machine

Docker Fundamentals a2622f1 39 © 2015 Docker Inc



Connecting to your Virtual Machine
You need an SSH client.

• On OS X, Linux, and other UNIX systems, just use ssh:

$ ssh <login>@<ip-address>

• On Windows, if you don't have an SSH client, you can download Putty
from www.putty.org.

Your training Virtual Machine

Docker Fundamentals a2622f1 40 © 2015 Docker Inc

http://www.putty.org


Checking your Virtual Machine
Once logged in, make sure that you can run a basic Docker command:

$ docker version
Client version: 1.9.0
Client API version: 1.21
Go version (client): go1.4.2
Git commit (client): 76d6bc9
OS/Arch (client): linux/amd64
Server version: 1.9.0
Server API version: 1.21
Go version (server): go1.4.2
Git commit (server): 76d6bc9

• If this doesn't work, raise your hand so that an instructor can assist you!

Your training Virtual Machine

Docker Fundamentals a2622f1 41 © 2015 Docker Inc



Install Docker

Install Docker

Docker Fundamentals a2622f1 42 © 2015 Docker Inc



Lesson 3: Installing Docker
Objectives

At the end of this lesson, you will be able to:

• Install Docker.

• Run Docker without sudo.

Note: if you were provided with a training VM for a hands-on tutorial, you can skip this
chapter, since that VM already has Docker installed, and Docker has already been setup
to run without sudo.

Install Docker

Docker Fundamentals a2622f1 43 © 2015 Docker Inc



Installing Docker
Docker is easy to install.

It runs on:

• A variety of Linux distributions.

• OS X via a virtual machine.

• Microsoft Windows via a virtual machine.

Install Docker

Docker Fundamentals a2622f1 44 © 2015 Docker Inc



Installing Docker on Linux
It can be installed via:

• Distribution-supplied packages on virtually all distros.

(Includes at least: Arch Linux, CentOS, Debian, Fedora, Gentoo,
openSUSE, RHEL, Ubuntu.)

• Packages supplied by Docker.

• Installation script from Docker.

• Binary download from Docker (it's a single file).

Install Docker

Docker Fundamentals a2622f1 45 © 2015 Docker Inc



Installing Docker on your Linux distribution
On Fedora:

$ sudo yum install docker-io

On CentOS 7:

$ sudo yum install docker

On Debian and derivatives:

$ sudo apt-get install docker.io

Install Docker

Docker Fundamentals a2622f1 46 © 2015 Docker Inc



Installation script from Docker
You can use the curl command to install on several platforms:

$ curl -s https://get.docker.com/ | sudo sh

This currently works on:

• Ubuntu

• Debian

• Fedora

• Gentoo

Install Docker

Docker Fundamentals a2622f1 47 © 2015 Docker Inc



Installing on OS X and Microsoft Windows
Docker doesn't run natively on OS X or Microsoft Windows.

We recommend to use the Docker Toolbox, which installs the following components:

• VirtualBox + Boot2Docker VM image (runs Docker Engine)

• Kitematic GUI

• Docker CLI

• Docker Machine

• Docker Compose

• A handful of clever wrappers

Install Docker

Docker Fundamentals a2622f1 48 © 2015 Docker Inc



Running Docker on OS X and Windows
When you execute docker version from the terminal:

• the CLI prepares a request for the REST API,

• environment variables tell the CLI where to send the request,

• the request goes to the Boot2Docker VM in VirtualBox,

• the Docker Engine in the VM processes the request.

Reminder: all communication happens over the API!

Install Docker

Docker Fundamentals a2622f1 49 © 2015 Docker Inc



Aboout boot2docker
It is a very small VM image (~30 MB).

It runs on most hypervisors and can also boot on actual hardware.

Boot2Docker is not a "lite" version of Docker.

Install Docker

Docker Fundamentals a2622f1 50 © 2015 Docker Inc



Check that Docker is working
Using the docker client:

$ docker version
Client:
Version:      1.9.0
API version:  1.21
Go version:   go1.4.2
Git commit:   76d6bc9
Built:        Tue Nov  3 17:29:38 UTC 2015
OS/Arch:      linux/amd64

Server:
Version:      1.9.0
API version:  1.21
Go version:   go1.4.2
Git commit:   76d6bc9
Built:        Tue Nov  3 17:29:38 UTC 2015
OS/Arch:      linux/amd64

Install Docker

Docker Fundamentals a2622f1 51 © 2015 Docker Inc



Su-su-sudo

Install Docker

Docker Fundamentals a2622f1 52 © 2015 Docker Inc



Important PSA about security
The docker user is root equivalent.

It provides root-level access to the host.

You should restrict access to it like you would protect root.

If you give somebody the ability to access the Docker API, you are giving them full
access on the machine.

Therefore, the Docker control socket is (by default) owned by the docker group, to
avoid unauthorized access on multi-user machines.

Install Docker

Docker Fundamentals a2622f1 53 © 2015 Docker Inc



The docker group
Add the Docker group

$ sudo groupadd docker

Add ourselves to the group

$ sudo gpasswd -a $USER docker

Restart the Docker daemon

$ sudo service docker restart

Log out

$ exit

Install Docker

Docker Fundamentals a2622f1 54 © 2015 Docker Inc



Check that Docker works without sudo
$ docker version
Client:
Version:      1.9.0
API version:  1.21
Go version:   go1.4.2
Git commit:   76d6bc9
Built:        Tue Nov  3 17:29:38 UTC 2015
OS/Arch:      linux/amd64

Server:
Version:      1.9.0
API version:  1.21
Go version:   go1.4.2
Git commit:   76d6bc9
Built:        Tue Nov  3 17:29:38 UTC 2015
OS/Arch:      linux/amd64

Install Docker

Docker Fundamentals a2622f1 55 © 2015 Docker Inc



Section summary
We've learned how to:

• Install Docker.

• Run Docker without sudo.

Install Docker

Docker Fundamentals a2622f1 56 © 2015 Docker Inc



Our First Containers

Our First Containers

Docker Fundamentals a2622f1 57 © 2015 Docker Inc



Lesson 4: Our First Containers
Objectives

At the end of this lesson, you will have:

• Seen Docker in action.

• Started your first containers.

Our First Containers

Docker Fundamentals a2622f1 58 © 2015 Docker Inc



Docker architecture
Docker is a client-server application.

• The Docker daemon (or "Engine")
Receives and processes incoming Docker API requests.

• The Docker client
Talks to the Docker daemon via the Docker API.
We'll use mostly the CLI embedded within the docker binary.

• Docker Hub Registry
Collection of public images.
The Docker daemon talks to it via the registry API.

Our First Containers

Docker Fundamentals a2622f1 59 © 2015 Docker Inc



Hello World
In your Docker environment, just run the following command:

$ docker run busybox echo hello world
hello world

Our First Containers

Docker Fundamentals a2622f1 60 © 2015 Docker Inc



That was our first container!

• We used one of the smallest, simplest images available: busybox.

• busybox is typically used in embedded systems (phones, routers...)

• We ran a single process and echo'ed hello world.

Our First Containers

Docker Fundamentals a2622f1 61 © 2015 Docker Inc



A more useful container
Let's run a more exciting container:

$ docker run -it ubuntu bash
root@04c0bb0a6c07:/#

• This is a brand new container.

• It runs a bare-bones, no-frills ubuntu system.

• -it is shorthand for -i -t.

• -i tells Docker to connect us to the container's stdin.

• -t tells Docker that we want a pseudo-terminal.

Our First Containers

Docker Fundamentals a2622f1 62 © 2015 Docker Inc



Do something in our container
Try to run figlet in our container.

root@04c0bb0a6c07:/# figlet hello
bash: figlet: command not found

Alright, we need to install it.

Our First Containers

Docker Fundamentals a2622f1 63 © 2015 Docker Inc



An obvservation
Let's check how many packages are installed here.

root@04c0bb0a6c07:/# dpkg -l | wc -l
189

• dpkg -l lists the packages installed in our container

• wc -l counts them

• If you have a Debian or Ubuntu machine, you can run the same
command and compare the results.

Our First Containers

Docker Fundamentals a2622f1 64 © 2015 Docker Inc



Install a package in our container
We want figlet, so let's install it:

root@04c0bb0a6c07:/# apt-get update
...
Fetched 1514 kB in 14s (103 kB/s)
Reading package lists... Done
root@04c0bb0a6c07:/# apt-get install figlet
Reading package lists... Done
...

One minute later, figlet is installed!

# figlet hello
_          _ _

| |__   ___| | | ___
| '_ \ / _ \ | |/ _ \
| | | |  __/ | | (_) |
|_| |_|\___|_|_|\___/

Our First Containers

Docker Fundamentals a2622f1 65 © 2015 Docker Inc



Exiting our container
Just exit the shell, like you would usually do.

(E.g. with ^D or exit)

root@04c0bb0a6c07:/# exit

• Our container is now in a stopped state.

• It still exists on disk, but all compute resources have been freed up.

Our First Containers

Docker Fundamentals a2622f1 66 © 2015 Docker Inc



Starting another container
What if we start a new container, and try to run figlet again?

$ docker run -it ubuntu bash
root@b13c164401fb:/# figlet
bash: figlet: command not found

• We started a brand new container.

• The basic Ubuntu image was used, and figlet is not here.

• We will see in the next chapters how to bake a custom image with
figlet.

Our First Containers

Docker Fundamentals a2622f1 67 © 2015 Docker Inc



Background Containers

Background Containers

Docker Fundamentals a2622f1 68 © 2015 Docker Inc



Lesson 5: Background Containers
Objectives

Our first containers were interactive.

We will now see how to:

• Run a non-interactive container.

• Run a container in the background.

• List running containers.

• Check the logs of a container.

• Stop a container.

• List stopped containers.

Background Containers

Docker Fundamentals a2622f1 69 © 2015 Docker Inc



A non-interactive container
We will run a small custom container.

This container just displays the time every second.

$ docker run jpetazzo/clock
Fri Feb 20 00:28:53 UTC 2015
Fri Feb 20 00:28:54 UTC 2015
Fri Feb 20 00:28:55 UTC 2015
...

• This container will run forever.

• To stop it, press ^C.

• Docker has automatically downloaded the image jpetazzo/clock.

• This image is a user image, created by jpetazzo.

• We will tell more about user images (and other types of images) later.

Background Containers

Docker Fundamentals a2622f1 70 © 2015 Docker Inc



Run a container in the background
Containers can be started in the background, with the -d flag (daemon mode):

$ docker run -d jpetazzo/clock
47d677dcfba4277c6cc68fcaa51f932b544cab1a187c853b7d0caf4e8debe5ad

• We don't see the output of the container.

• But don't worry: Docker collects that output and logs it!

• Docker gives us the ID of the container.

Background Containers

Docker Fundamentals a2622f1 71 © 2015 Docker Inc



List running containers
How can we check that our container is still running?

With docker ps, just like the UNIX ps command, lists running processes.

$ docker ps
CONTAINER ID  IMAGE                  COMMAND  CREATED        STATUS        ...
47d677dcfba4  jpetazzo/clock:latest  ...      2 minutes ago  Up 2 minutes  ...

Docker tells us:

• The (truncated) ID of our container.

• The image used to start the container.

• That our container has been running (Up) for a couple of minutes.

• Other information (COMMAND, PORTS, NAMES) that we will explain
later.

Background Containers

Docker Fundamentals a2622f1 72 © 2015 Docker Inc



Two useful flags for docker ps
To see only the last container that was started:

$ docker ps -l
CONTAINER ID  IMAGE                  COMMAND  CREATED        STATUS        ...
47d677dcfba4  jpetazzo/clock:latest  ...      2 minutes ago  Up 2 minutes  ...

To see only the ID of containers:

$ docker ps -q
47d677dcfba4
66b1ce719198
ee0255a5572e

Combine those flags to see only the ID of the last container started!

$ docker ps -lq
47d677dcfba4

Background Containers

Docker Fundamentals a2622f1 73 © 2015 Docker Inc



View the logs of a container
We told you that Docker was logging the container output.

Let's see that now.

$ docker logs 47d6
Fri Feb 20 00:39:52 UTC 2015
Fri Feb 20 00:39:53 UTC 2015
...

• We specified a prefix of the full container ID.

• You can, of course, specify the full ID.

• The logs command will output the entire logs of the container.
(Sometimes, that will be too much. Let's see how to address that.)

Background Containers

Docker Fundamentals a2622f1 74 © 2015 Docker Inc



View only the tail of the logs
To avoid being spammed with eleventy pages of output, we can use the --tail
option:

$ docker logs --tail 3 47d6
Fri Feb 20 00:55:35 UTC 2015
Fri Feb 20 00:55:36 UTC 2015
Fri Feb 20 00:55:37 UTC 2015

• The parameter is the number of lines that we want to see.

Background Containers

Docker Fundamentals a2622f1 75 © 2015 Docker Inc



Follow the logs in real time
Just like with the standard UNIX command tail -f, we can follow the logs of our
container:

$ docker logs --tail 1 --follow 47d6
Fri Feb 20 00:57:12 UTC 2015
Fri Feb 20 00:57:13 UTC 2015
^C

• This will display the last line in the log file.

• Then, it will continue to display the logs in real time.

• Use ^C to exit.

Background Containers

Docker Fundamentals a2622f1 76 © 2015 Docker Inc



Stop our container
There are two ways we can terminate our detached container.

• Killing it using the docker kill command.

• Stopping it using the docker stop command.

The first one stops the container immediately, by using the KILL signal.

The second one is more graceful. It sends a TERM signal, and after 10 seconds, if the
container has not stopped, it sends KILL.

Reminder: the KILL signal cannot be intercepted, and will forcibly terminate the
container.

Background Containers

Docker Fundamentals a2622f1 77 © 2015 Docker Inc



Killing it
Let's kill our container:

$ docker kill 47d6
47d6

Docker will echo the ID of the container we've just stopped.

Let's check that our container doesn't show up anymore:

$ docker ps

Background Containers

Docker Fundamentals a2622f1 78 © 2015 Docker Inc



List stopped containers
We can also see stopped containers, with the -a (--all) option.

$ docker ps -a
CONTAINER ID  IMAGE                  ...  CREATED      STATUS
47d677dcfba4  jpetazzo/clock:latest  ...  23 min. ago  Exited (0) 4 min. ago
5c1dfd4d81f1  jpetazzo/clock:latest  ...  40 min. ago  Exited (0) 40 min. ago
b13c164401fb  ubuntu:latest          ...  55 min. ago  Exited (130) 53 min. ago

Background Containers

Docker Fundamentals a2622f1 79 © 2015 Docker Inc



Restarting and Attaching to Containers

Restarting and Attaching to Containers

Docker Fundamentals a2622f1 80 © 2015 Docker Inc



Lesson 6: Restarting and Attaching to Containers
Objectives

We have started containers in the foreground, and in the background.

In this chapter, we will see how to:

• Put a container in the background.

• Attach to a background container to bring it to the foreground.

• Restart a stopped container.

Restarting and Attaching to Containers

Docker Fundamentals a2622f1 81 © 2015 Docker Inc



Background and foreground
The distinction between foreground and background containers is arbitrary.

From Docker's point of view, all containers are the same.

All containers run the same way, whether there is a client attached to them or not.

It is always possible to detach from a container, and to reattach to a container.

Restarting and Attaching to Containers

Docker Fundamentals a2622f1 82 © 2015 Docker Inc



Detaching from a container

• If you have started an interactive container (with option -it),
you can detach from it.

• The "detach" sequence is ^P^Q.

• Otherwise you can detach by killing the Docker client.
(But not by hitting ^C, as this would deliver SIGINT to the container.)

What does -it stand for?

• -t means "allocate a terminal."

• -i means "connect stdin to the terminal."

Restarting and Attaching to Containers

Docker Fundamentals a2622f1 83 © 2015 Docker Inc



Attaching to a container
You can attach to a container:

$ docker attach <containerID>

• The container must be running.

• There can be multiple clients attached to the same container.

• Warning: if the container was started without -it...

• You won't be able to detach with ^P^Q.

• If you hit ^C, the signal will be proxied to the container.

• Remember: you can always detach by killing the Docker client.

Restarting and Attaching to Containers

Docker Fundamentals a2622f1 84 © 2015 Docker Inc



Checking container output

• Use docker attach if you intend to send input to the container.

• If you just want to see the output of a container, use docker logs.

$ docker logs --tail 1 --follow
<containerID>

Restarting and Attaching to Containers

Docker Fundamentals a2622f1 85 © 2015 Docker Inc



Restarting a container
When a container has exited, it is in stopped state.

It can then be restarted with the start command.

$ docker start <yourContainerID>

The container will be restarted using the same options you launched it with.

You can re-attach to it if you want to interact with it.

Restarting and Attaching to Containers

Docker Fundamentals a2622f1 86 © 2015 Docker Inc



Understanding Docker Images

Understanding Docker Images

Docker Fundamentals a2622f1 87 © 2015 Docker Inc



Lesson 7: Understanding Docker Images
Objectives

In this lesson, we will explain:

• What is an image.

• What is a layer.

• The various image namespaces.

• How to search and download images.

Understanding Docker Images

Docker Fundamentals a2622f1 88 © 2015 Docker Inc



What is an image?

• An image is a collection of files + some meta data.
(Technically: those files form the root filesystem of a container.)

• Images are made of layers, conceptually stacked on top of each other.

• Each layer can add, change, and remove files.

• Images can share layers to optimize disk usage, transfer times, and
memory use.

Understanding Docker Images

Docker Fundamentals a2622f1 89 © 2015 Docker Inc



Differences between containers and images

• An image is a read-only filesystem.

• A container is an encapsulated set of processes running in a read-write
copy of that filesystem.

• To optimize container boot time, copy-on-write is used instead of regular
copy.

• docker run starts a container from a given image.

Let's give a couple of metaphors to illustrate those concepts.

Understanding Docker Images

Docker Fundamentals a2622f1 90 © 2015 Docker Inc



Image as stencils
Images are like templates or stencils that you can create containers from.

Understanding Docker Images

Docker Fundamentals a2622f1 91 © 2015 Docker Inc



Object-oriented programming

• Images are conceptually similar to classes.

• Layers are conceptually similar to inheritance.

• Containers are conceptually similar to instances.

Understanding Docker Images

Docker Fundamentals a2622f1 92 © 2015 Docker Inc



Wait a minute...
If an image is read-only, how do we change it?

• We don't.

• We create a new container from that image.

• Then we make changes to that container.

• When we are satisfied with those changes, we transform them into a new
layer.

• A new image is created by stacking the new layer on top of the old image.

Understanding Docker Images

Docker Fundamentals a2622f1 93 © 2015 Docker Inc



A chicken-and-egg problem

• The only way to create an image is by "freezing" a container.

• The only way to create a container is by instanciating an image.

• Help!

Understanding Docker Images

Docker Fundamentals a2622f1 94 © 2015 Docker Inc



Creating the first images
There is a special empty image called scratch.

• It allows to build from scratch.

The docker import command loads a tarball into Docker.

• The imported tarball becomes a standalone image.

• That new image has a single layer.

Note: you will probably never have to do this yourself.

Understanding Docker Images

Docker Fundamentals a2622f1 95 © 2015 Docker Inc



Creating other images
docker commit

• Saves all the changes made to a container into a new layer.

• Creates a new image (effectively a copy of the container).

docker build

• Performs a repeatable build sequence.

• This is the preferred method!

We will explain both methods in a moment.

Understanding Docker Images

Docker Fundamentals a2622f1 96 © 2015 Docker Inc



Images namespaces
There are three namespaces:

• Root-like

ubuntu

• User (and organizations)

jpetazzo/clock

• Self-Hosted

registry.example.com:5000/my-private-image

Let's explain each of them.

Understanding Docker Images

Docker Fundamentals a2622f1 97 © 2015 Docker Inc



Root namespace
The root namespace is for official images. They are put there by Docker Inc., but they
are generally authored and maintained by third parties.

Those images include:

• Small, "swiss-army-knife" images like busybox.

• Distro images to be used as bases for your builds, like ubuntu, fedora...

• Ready-to-use components and services, like redis, postgresql...

Understanding Docker Images

Docker Fundamentals a2622f1 98 © 2015 Docker Inc



User namespace
The user namespace holds images for Docker Hub users and organizations.

For example:

jpetazzo/clock

The Docker Hub user is:

jpetazzo

The image name is:

clock

Understanding Docker Images

Docker Fundamentals a2622f1 99 © 2015 Docker Inc



Self-Hosted namespace
This namespace holds images which are not hosted on Docker Hub, but on third party
registries.

They contain the hostname (or IP address), and optionally the port, of the registry
server.

For example:

localhost:5000/wordpress

The remote host and port is:

localhost:5000

The image name is:

wordpress

Understanding Docker Images

Docker Fundamentals a2622f1 100 © 2015 Docker Inc



Historical detail
Self-hosted registries used to be called private registries, but this was misleading!

• A self-hosted registry can be public or private.

• A registry in the User namespace on Docker Hub can be public or private.

Understanding Docker Images

Docker Fundamentals a2622f1 101 © 2015 Docker Inc



How do you store and manage images?
Images can be stored:

• On your Docker host.

• In a Docker registry.

You can use the Docker client to download (pull) or upload (push) images.

To be more accurate: you can use the Docker client to tell a Docker server to push and
pull images to and from a registry.

Understanding Docker Images

Docker Fundamentals a2622f1 102 © 2015 Docker Inc



Showing current images
Let's look at what images are on our host now.

$ docker images
REPOSITORY         TAG     IMAGE ID     CREATED     VIRTUAL SIZE
ubuntu             13.10   9f676bd305a4 7 weeks ago 178 MB
ubuntu             saucy   9f676bd305a4 7 weeks ago 178 MB
ubuntu             raring  eb601b8965b8 7 weeks ago 166.5 MB
ubuntu             13.04   eb601b8965b8 7 weeks ago 166.5 MB
ubuntu             12.10   5ac751e8d623 7 weeks ago 161 MB
ubuntu             quantal 5ac751e8d623 7 weeks ago 161 MB
ubuntu             10.04   9cc9ea5ea540 7 weeks ago 180.8 MB
ubuntu             lucid   9cc9ea5ea540 7 weeks ago 180.8 MB
ubuntu             12.04   9cd978db300e 7 weeks ago 204.4 MB
ubuntu             latest  9cd978db300e 7 weeks ago 204.4 MB
ubuntu             precise 9cd978db300e 7 weeks ago 204.4 MB

Understanding Docker Images

Docker Fundamentals a2622f1 103 © 2015 Docker Inc



Searching for images
Searches your registry for images:

$ docker search zookeeper
NAME                             DESCRIPTION                     STARS  ...
jplock/zookeeper                 Builds a docker image for ...   27
thefactory/zookeeper-exhibitor   Exhibitor-managed ZooKeepe...   2
misakai/zookeeper                ZooKeeper is a service for...   1
digitalwonderland/zookeeper      Latest Zookeeper - cluster...   1
garland/zookeeper                                                1
raycoding/piggybank-zookeeper    Zookeeper 3.4.6 running on...   1
gregory90/zookeeper                                              0

• "Stars" indicate the popularity of the image.

• "Official" images are those in the root namespace.

• "Automated" images are built automatically by the Docker Hub.
(This means that their build recipe is always available.)

Understanding Docker Images

Docker Fundamentals a2622f1 104 © 2015 Docker Inc



Downloading images
There are two ways to download images.

• Explicitly, with docker pull.

• Implicitly, when executing docker run and the image is not found
locally.

Understanding Docker Images

Docker Fundamentals a2622f1 105 © 2015 Docker Inc



Pulling an image
$ docker pull debian:jessie
Pulling repository debian
b164861940b8: Download complete
b164861940b8: Pulling image (jessie) from debian
d1881793a057: Download complete

• As seen previously, images are made up of layers.

• Docker has downloaded all the necessary layers.

• In this example, :jessie indicates which exact version of Debian we
would like. It is a version tag.

Understanding Docker Images

Docker Fundamentals a2622f1 106 © 2015 Docker Inc



Image and tags

• Images can have tags.

• Tags define image versions or variants.

• docker pull ubuntu will refer to ubuntu:latest.

• The :latest tag is generally updated often.

Understanding Docker Images

Docker Fundamentals a2622f1 107 © 2015 Docker Inc



When to (not) use tags
Don't specify tags:

• When doing rapid testing and prototyping.

• When experimenting.

• When you want the latest version.

Do specify tags:

• When recording a procedure into a script.

• When going to production.

• To ensure that the same version will be used everywhere.

• To ensure repeatability later.

Understanding Docker Images

Docker Fundamentals a2622f1 108 © 2015 Docker Inc



Section summary
We've learned how to:

• Understand images and layers.

• Understand Docker image namespacing.

• Search and download images.

Understanding Docker Images

Docker Fundamentals a2622f1 109 © 2015 Docker Inc



Building Images Interactively

Building Images Interactively

Docker Fundamentals a2622f1 110 © 2015 Docker Inc



Lesson 8: Building Images Interactively
Objectives

In this lesson, we will create our first container image.

It will be a basic distribution image, but we will pre-install the package figlet.

We will:

• Create a container from a base image.

• Install software manually in the container, and turn it into a new image.

• Learn about new commands: docker commit, docker tag, and
docker diff.

Building Images Interactively

Docker Fundamentals a2622f1 111 © 2015 Docker Inc



Building Images Interactively
As we have seen, the images on the Docker Hub are sometimes very basic.

How do we want to construct our own images?

As an example, we will build an image that has figlet.

First, we will do it manually with docker commit.

Then, in an upcoming chapter, we will use a Dockerfile and docker build.

Building Images Interactively

Docker Fundamentals a2622f1 112 © 2015 Docker Inc



Building from a base
Our base will be the ubuntu image.

Building Images Interactively

Docker Fundamentals a2622f1 113 © 2015 Docker Inc



Create a new container and make some changes
Start an Ubuntu container:

$ docker run -it ubuntu bash
root@<yourContainerId>:#/

Run the command apt-get update to refresh the list of packages available to
install.

Then run the command apt-get install figlet to install the program we are
interested in.

root@<yourContainerId>:#/ apt-get update && apt-get install figlet
.... OUTPUT OF APT-GET COMMANDS ....

Building Images Interactively

Docker Fundamentals a2622f1 114 © 2015 Docker Inc



Inspect the changes
Type exit at the container prompt to leave the interactive session.

Now let's run docker diff to see the difference between the base image and our
container.

$ docker diff <yourContainerId>
C /root
A /root/.bash_history
C /tmp
C /usr
C /usr/bin
A /usr/bin/figlet
...

Building Images Interactively

Docker Fundamentals a2622f1 115 © 2015 Docker Inc



Docker tracks filesystem changes
As explained before:

• An image is read-only.

• When we make changes, they happen in a copy of the image.

• Docker can show the difference between the image, and its copy.

• For performance, Docker uses copy-on-write systems.
(i.e. starting a container based on a big image doesn't incur a huge copy.)

Building Images Interactively

Docker Fundamentals a2622f1 116 © 2015 Docker Inc



Commit and run your image
The docker commit command will create a new layer with those changes, and a new
image using this new layer.

$ docker commit <yourContainerId>
<newImageId>

The output of the docker commit command will be the ID for your newly created
image.

We can run this image:

$ docker run -it <newImageId>
root@fcfb62f0bfde:/# figlet hello
_          _ _

| |__   ___| | | ___
| '_ \ / _ \ | |/ _ \
| | | |  __/ | | (_) |
|_| |_|\___|_|_|\___/

Building Images Interactively

Docker Fundamentals a2622f1 117 © 2015 Docker Inc



Tagging images
Referring to an image by its ID is not convenient. Let's tag it instead.

We can use the tag command:

$ docker tag <newImageId> figlet

But we can also specify the tag as an extra argument to commit:

$ docker commit <containerId> figlet

And then run it using its tag:

$ docker run -it figlet

Building Images Interactively

Docker Fundamentals a2622f1 118 © 2015 Docker Inc



What's next?
Manual process = bad.

Automated process = good.

In the next chapter, we will learn how to automate the build process by writing a
Dockerfile.

Building Images Interactively

Docker Fundamentals a2622f1 119 © 2015 Docker Inc



Building Docker images

Building Docker images

Docker Fundamentals a2622f1 120 © 2015 Docker Inc



Lesson 9: Building Images With A Dockerfile
Objectives

We will build a container image automatically, with a Dockerfile.

At the end of this lesson, you will be able to:

• Write a Dockerfile.

• Build an image from a Dockerfile.

Building Docker images

Docker Fundamentals a2622f1 121 © 2015 Docker Inc



Dockerfile overview

• A Dockerfile is a build recipe for a Docker image.

• It contains a series of instructions telling Docker how an image is
constructed.

• The docker build command builds an image from a Dockerfile.

Building Docker images

Docker Fundamentals a2622f1 122 © 2015 Docker Inc



Writing our first Dockerfile
Our Dockerfile must be in a new, empty directory.

1. Create a directory to hold our Dockerfile.

$ mkdir myimage

2. Create a Dockerfile inside this directory.

$ cd myimage
$ vim Dockerfile

Of course, you can use any other editor of your choice.

Building Docker images

Docker Fundamentals a2622f1 123 © 2015 Docker Inc



Type this into our Dockerfile...
FROM ubuntu
RUN apt-get update
RUN apt-get install figlet

• FROM indicates the base image for our build.

• Each RUN line will be executed by Docker during the build.

• Our RUN commands must be non-interactive.
(No input can be provided to Docker during the build.)

• In many cases, we will add the -y flag to apt-get.

Building Docker images

Docker Fundamentals a2622f1 124 © 2015 Docker Inc



Build it!
Save our file, then execute:

$ docker build -t figlet .

• -t indicates the tag to apply to the image.

• . indicates the location of the build context.
(We will talk more about the build context later; but to keep things simple:
this is the directory where our Dockerfile is located.)

Building Docker images

Docker Fundamentals a2622f1 125 © 2015 Docker Inc



What happens when we build the image?
The output of docker build looks like this:

$ docker build -t figlet .
Sending build context to Docker daemon 2.048 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu
---> e54ca5efa2e9

Step 1 : RUN apt-get update
---> Running in 840cb3533193
---> 7257c37726a1

Removing intermediate container 840cb3533193
Step 2 : RUN apt-get install figlet
---> Running in 2b44df762a2f
---> f9e8f1642759

Removing intermediate container 2b44df762a2f
Successfully built f9e8f1642759

• The output of the RUN commands has been omitted.

• Let's explain what this output means.

Building Docker images

Docker Fundamentals a2622f1 126 © 2015 Docker Inc



Sending the build context to Docker
Sending build context to Docker daemon 2.048 kB

• The build context is the . directory given to docker build.

• It is sent (as an archive) by the Docker client to the Docker daemon.

• This allows to use a remote machine to build using local files.

• Be careful (or patient) if that directory is big and your link is slow.

Building Docker images

Docker Fundamentals a2622f1 127 © 2015 Docker Inc



Executing each step
Step 1 : RUN apt-get update
---> Running in 840cb3533193

(...output of the RUN command...)
---> 7257c37726a1

Removing intermediate container 840cb3533193

• A container (840cb3533193) is created from the base image.

• The RUN command is executed in this container.

• The container is committed into an image (7257c37726a1).

• The build container (840cb3533193) is removed.

• The output of this step will be the base image for the next one.

Building Docker images

Docker Fundamentals a2622f1 128 © 2015 Docker Inc



The caching system
If you run the same build again, it will be instantaneous.

Why?

• After each build step, Docker takes a snapshot of the resulting image.

• Before executing a step, Docker checks if it has already built the same
sequence.

• Docker uses the exact strings defined in your Dockerfile, so:

• RUN apt-get install figlet cowsay is different from
RUN apt-get install cowsay figlet

• RUN apt-get update is not re-executed when the mirrors
are updated

You can force a rebuild with docker build --no-cache ....

Building Docker images

Docker Fundamentals a2622f1 129 © 2015 Docker Inc



Running the image
The resulting image is not different from the one produced manually.

$ docker run -ti figlet
root@91f3c974c9a1:/# figlet hello
_          _ _

| |__   ___| | | ___
| '_ \ / _ \ | |/ _ \
| | | |  __/ | | (_) |
|_| |_|\___|_|_|\___/

• Sweet is the taste of success!

Building Docker images

Docker Fundamentals a2622f1 130 © 2015 Docker Inc



Using image and viewing history
The history command lists all the layers composing an image.

For each layer, it shows its creation time, size, and creation command.

When an image was built with a Dockerfile, each layer corresponds to a line of the
Dockerfile.

$ docker history figlet
IMAGE         CREATED            CREATED BY                     SIZE
f9e8f1642759  About an hour ago  /bin/sh -c apt-get install fi  6.062 MB
7257c37726a1  About an hour ago  /bin/sh -c apt-get update      8.549 MB
e54ca5efa2e9  8 months ago       /bin/sh -c apt-get update &&   8 B
6c37f792ddac  8 months ago       /bin/sh -c apt-get update &&   83.43 MB
83ff768040a0  8 months ago       /bin/sh -c sed -i  s/^#\s*\(d  1.903 kB
2f4b4d6a4a06  8 months ago       /bin/sh -c echo  #!/bin/sh  >  194.5 kB
d7ac5e4f1812  8 months ago       /bin/sh -c #(nop) ADD file:ad  192.5 MB
511136ea3c5a  20 months ago                                     0 B

Building Docker images

Docker Fundamentals a2622f1 131 © 2015 Docker Inc



CMD and ENTRYPOINT

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 132 © 2015 Docker Inc



Lesson 10: CMD and ENTRYPOINT
Objectives

In this lesson, we will learn about two important Dockerfile commands:

CMD and ENTRYPOINT.

Those commands allow us to set the default command to run in a container.

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 133 © 2015 Docker Inc



Defining a default command
When people run our container, we want to greet them with a nice hello message, and
using a custom font.

For that, we will execute:

figlet -f script hello

• -f script tells figlet to use a fancy font.

• hello is the message that we want it to display.

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 134 © 2015 Docker Inc



Adding CMD to our Dockerfile
Our new Dockerfile will look like this:

FROM ubuntu
RUN apt-get update
RUN apt-get install figlet
CMD figlet -f script hello

• CMD defines a default command to run when none is given.

• It can appear at any point in the file.

• Each CMD will replace and override the previous one.

• As a result, while you can have multiple CMD lines, it is useless.

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 135 © 2015 Docker Inc



Build and test our image
Let's build it:

$ docker build -t figlet .
...
Successfully built 042dff3b4a8d

And run it:

$ docker run figlet
_          _   _

| |        | | | |
| |     _  | | | |  __
|/ \   |/  |/  |/  /  \_
|   |_/|__/|__/|__/\__/

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 136 © 2015 Docker Inc



Overriding CMD
If we want to get a shell into our container (instead of running figlet), we just have to
specify a different program to run:

$ docker run -it figlet bash
root@7ac86a641116:/#

• We specified bash.

• It replaced the value of CMD.

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 137 © 2015 Docker Inc



Using ENTRYPOINT
We want to be able to specify a different message on the command line, while retaining
figlet and some default parameters.

In other words, we would like to be able to do this:

$ docker run figlet salut
_

| |
,   __,  | |       _|_

/ \_/  |  |/  |   |  |
\/ \_/|_/|__/ \_/|_/|_/

We will use the ENTRYPOINT verb in Dockerfile.

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 138 © 2015 Docker Inc



Adding ENTRYPOINT to our Dockerfile
Our new Dockerfile will look like this:

FROM ubuntu
RUN apt-get update
RUN apt-get install figlet
ENTRYPOINT ["figlet", "-f", "script"]

• ENTRYPOINT defines a base command (and its parameters) for the
container.

• The command line arguments are appended to those parameters.

• Like CMD, ENTRYPOINT can appear anywhere, and replaces the previous
value.

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 139 © 2015 Docker Inc



Build and test our image
Let's build it:

$ docker build -t figlet .
...
Successfully built 36f588918d73

And run it:

$ docker run figlet salut
_

| |
,   __,  | |       _|_

/ \_/  |  |/  |   |  |
\/ \_/|_/|__/ \_/|_/|_/

Great success!

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 140 © 2015 Docker Inc



Using CMD and ENTRYPOINT together
What if we want to define a default URL for our container?

Then we will use ENTRYPOINT and CMD together.

• ENTRYPOINT will define the base command for our container.

• CMD will define the default parameter(s) for this command.

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 141 © 2015 Docker Inc



CMD and ENTRYPOINT together
Our new Dockerfile will look like this:

FROM ubuntu
RUN apt-get update
RUN apt-get install figlet
ENTRYPOINT ["figlet", "-f", "script"]
CMD hello world

• ENTRYPOINT defines a base command (and its parameters) for the
container.

• If we don't specify extra command-line arguments when starting the
container, the value of CMD is appended.

• Otherwise, our extra command-line arguments are used instead of CMD.

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 142 © 2015 Docker Inc



Build and test our image
Let's build it:

$ docker build -t figlet .
...
Successfully built 6e0b6a048a07

And run it:

$ docker run figlet
_          _   _                             _

| |        | | | |                           | |    |
| |     _  | | | |  __             __   ,_   | |  __|
|/ \   |/  |/  |/  /  \_  |  |  |_/  \_/  |  |/  /  |
|   |_/|__/|__/|__/\__/    \/ \/  \__/    |_/|__/\_/|_/

$ docker run figlet hola mundo
_           _

| |         | |                                      |
| |     __  | |  __,     _  _  _           _  _    __|   __
|/ \   /  \_|/  /  |    / |/ |/ |  |   |  / |/ |  /  |  /  \_
|   |_/\__/ |__/\_/|_/    |  |  |_/ \_/|_/  |  |_/\_/|_/\__/

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 143 © 2015 Docker Inc



Overriding ENTRYPOINT
What if we want to run a shell in our container?

We cannot just do docker run figlet bash because that would just tell figlet to
display the word "bash."

We use the --entrypoint parameter:

$ docker run -it --entrypoint bash figlet
root@6027e44e2955:/#

CMD and ENTRYPOINT

Docker Fundamentals a2622f1 144 © 2015 Docker Inc



Copying files during the build

Copying files during the build

Docker Fundamentals a2622f1 145 © 2015 Docker Inc



Lesson 11: Copying files during the build
Objectives

So far, we have installed things in our container images by downloading packages.

We can also copy files from the build context to the container that we are building.

Remember: the build context is the directory containing the Dockerfile.

In this chapter, we will learn a new Dockerfile keyword: COPY.

Copying files during the build

Docker Fundamentals a2622f1 146 © 2015 Docker Inc



Build some C code
We want to build a container that compiles a basic "Hello world" program in C.

Here is the program, hello.c:

int main () {
puts("Hello, world!");
return 0;

}

Let's create a new directory, and put this file in there.

Then we will write the Dockerfile.

Copying files during the build

Docker Fundamentals a2622f1 147 © 2015 Docker Inc



The Dockerfile
On Debian and Ubuntu, the package build-essential will get us a compiler.

When installing it, don't forget to specify the -y flag, otherwise the build will fail (since
the build cannot be interactive).

Then we will use COPY to place the source file into the container.

FROM ubuntu
RUN apt-get update
RUN apt-get install -y build-essential
COPY hello.c /
RUN make hello
CMD /hello

Create this Dockerfile.

Copying files during the build

Docker Fundamentals a2622f1 148 © 2015 Docker Inc



Testing our C program

• Create hello.c and Dockerfile in the same direcotry.

• Run docker build -t hello . in this directory.

• Run docker run hello, you should see Hello, world!.

Success!

Copying files during the build

Docker Fundamentals a2622f1 149 © 2015 Docker Inc



COPY and the build cache

• Run the build again.

• Now, modify hello.c and run the build again.

• Docker can cache steps involving COPY.

• Those steps will not be executed again if the files haven't been changed.

Copying files during the build

Docker Fundamentals a2622f1 150 © 2015 Docker Inc



Details

• You can COPY whole directories recursively.

• Older Dockerfiles also have the ADD instruction.
It is similar but can automatically extract archives.

• If we really wanted to compile C code in a compiler, we would:

• Place it in a different directory, with the WORKDIR instruction.

• Even better, use the gcc official image.

Copying files during the build

Docker Fundamentals a2622f1 151 © 2015 Docker Inc



A quick word about the Docker Hub

A quick word about the Docker Hub

Docker Fundamentals a2622f1 152 © 2015 Docker Inc



Lesson 12: Uploading our images to the Docker Hub
We have built our first images.

If we were so inclined, we could share those images through the Docker Hub.

We won't do it since we don't want to force everyone to create a Docker Hub account
(although it's free, yay!) but the steps would be:

• have an account on the Docker Hub

• tag our image accordingly (i.e. username/imagename)

• docker push username/imagename

Anybody can now docker run username/imagename from any Docker host.

Images can be set to be private as well.

A quick word about the Docker Hub

Docker Fundamentals a2622f1 153 © 2015 Docker Inc



Naming and inspecting containers

Naming and inspecting containers

Docker Fundamentals a2622f1 154 © 2015 Docker Inc



Lesson 13: Naming and inspecting containers
Objectives

In this lesson, we will learn about an important Docker concept: container naming.

Naming allows us to:

• Reference easily a container.

• Ensure unicity of a specific container.

We will also see the inspect command, which gives a lot of details about a container.

Naming and inspecting containers

Docker Fundamentals a2622f1 155 © 2015 Docker Inc



Naming our containers
So far, we have referenced containers with their ID.

We have copy-pasted the ID, or used a shortened prefix.

But each container can also be referenced by its name.

If a container is named prod-db, I can do:

$ docker logs prod-db
$ docker stop prod-db
etc.

Naming and inspecting containers

Docker Fundamentals a2622f1 156 © 2015 Docker Inc



Default names
When we create a container, if we don't give a specific name, Docker will pick one for us.

It will be the concatenation of:

• A mood (furious, goofy, suspicious, boring...)

• The name of a famous inventor (tesla, darwin, wozniak...)

Examples: happy_curie, clever_hopper, jovial_lovelace ...

Naming and inspecting containers

Docker Fundamentals a2622f1 157 © 2015 Docker Inc



Specifying a name
You can set the name of the container when you create it.

$ docker run --name ticktock jpetazzo/clock

If you specify a name that already exists, Docker will refuse to create the container.

This lets us enforce unicity of a given resource.

Naming and inspecting containers

Docker Fundamentals a2622f1 158 © 2015 Docker Inc



Renaming containers
Since Docker 1.5 (released February 2015), you can rename containers with docker
rename.

This allows you to "free up" a name without destroying the associated container, for
instance.

Naming and inspecting containers

Docker Fundamentals a2622f1 159 © 2015 Docker Inc



Inspecting a container
The docker inspect command will output a very detailed JSON map.

$ docker inspect <containerID>
[{
"AppArmorProfile": "",
"Args": [],
"Config": {

"AttachStderr": true,
"AttachStdin": false,
"AttachStdout": true,
"Cmd": [
"bash"
],
"CpuShares": 0,

...

There are multiple ways to consume that information.

Naming and inspecting containers

Docker Fundamentals a2622f1 160 © 2015 Docker Inc



Parsing JSON with the Shell

• You could grep and cut or awk the output of docker inspect.

• Please, don't.

• It's painful.

• If you really must parse JSON from the Shell, use JQ!
(It's great.)

$ docker inspect <containerID> | jq .

• We will see a better solution which doesn't require extra tools.

Naming and inspecting containers

Docker Fundamentals a2622f1 161 © 2015 Docker Inc



Using --format
You can specify a format string, which will be parsed by Go's text/template package.

$ docker inspect --format '{{ json .Created }}' <containerID>
"2015-02-24T07:21:11.712240394Z"

• The generic syntax is to wrap the expression with double curly braces.

• The expression starts with a dot representing the JSON object.

• Then each field or member can be accessed in dotted notation syntax.

• The optional json keyword asks for valid JSON output.
(e.g. here it adds the surrounding double-quotes.)

Naming and inspecting containers

Docker Fundamentals a2622f1 162 © 2015 Docker Inc



Container Networking Basics

Container Networking Basics

Docker Fundamentals a2622f1 163 © 2015 Docker Inc



Lesson 14: Container Networking Basics
Objectives

We will now run network services (accepting requests) in containers.

At the end of this lesson, you will be able to:

• Run a network service in a container.

• Manipulate container networking basics.

• Find a container's IP address.

We will also explain the different network models used by Docker.

Container Networking Basics

Docker Fundamentals a2622f1 164 © 2015 Docker Inc



A simple, static web server
Run the Docker Hub image nginx, which contains a basic web server:

$ docker run -d -P nginx
66b1ce719198711292c8f34f84a7b68c3876cf9f67015e752b94e189d35a204e

• Docker will download the image from the Docker Hub.

• -d tells Docker to run the image in the background.

• -P tells Docker to make this service reachable from other computers.
(-P is the short version of --publish-all.)

But, how do we connect to our web server now?

Container Networking Basics

Docker Fundamentals a2622f1 165 © 2015 Docker Inc



Finding our web server port
We will use docker ps:

$ docker ps
CONTAINER ID  IMAGE  ...  PORTS                                          ...
e40ffb406c9e  nginx  ...  0.0.0.0:32769->80/tcp, 0.0.0.0:32768->443/tcp  ...

• The web server is running on ports 80 and 443 inside the container.

• Those ports are mapped to ports 32769 and 32768 on our Docker host.

We will explain the whys and hows of this port mapping.

But first, let's make sure that everything works properly.

Container Networking Basics

Docker Fundamentals a2622f1 166 © 2015 Docker Inc



Connecting to our web server (GUI)
Point your browser to the IP address of your Docker host, on the port shown by
docker ps for container port 80.

Container Networking Basics

Docker Fundamentals a2622f1 167 © 2015 Docker Inc



Connecting to our web server (CLI)
You can also use curl directly from the Docker host.

Make sure to use the right port number if it is different from the example below:

$ curl localhost:32769
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...

Container Networking Basics

Docker Fundamentals a2622f1 168 © 2015 Docker Inc



Why are we mapping ports?

• We are out of IPv4 addresses.

• Containers cannot have public IPv4 addresses.

• They have private addresses.

• Services have to be exposed port by port.

• Ports have to be mapped to avoid conflicts.

Container Networking Basics

Docker Fundamentals a2622f1 169 © 2015 Docker Inc



Finding the web server port in a script
Parsing the output of docker ps would be painful.

There is a command to help us:

$ docker port <containerID> 80
32769

Container Networking Basics

Docker Fundamentals a2622f1 170 © 2015 Docker Inc



Manual allocation of port numbers
If you want to set port numbers yourself, no problem:

$ docker run -d -p 80:80 nginx
$ docker run -d -p 8000:80 nginx

• We are running two NGINX web servers.

• The first one is exposed on port 80.

• The second one is exposed on port 8000.

Note: the convention is port-on-host:port-on-container.

Container Networking Basics

Docker Fundamentals a2622f1 171 © 2015 Docker Inc



Plumbing containers into your infrastructure
There are (at least) three ways to integrate containers in your network.

• Start the container, letting Docker allocate a public port for it.
Then retrieve that port number and feed it to your configuration.

• Pick a fixed port number in advance, when you generate your
configuration.
Then start your container by setting the port numbers manually.

• Use an overlay network, connecting your containers with e.g. VLANs,
tunnels...

Container Networking Basics

Docker Fundamentals a2622f1 172 © 2015 Docker Inc



Finding the container's IP address
We can use the docker inspect command to find the IP address of the container.

$ docker inspect --format '{{ .NetworkSettings.IPAddress }}' <yourContainerID>
172.17.0.3

• docker inspect is an advanced command, that can retrieve a ton of
information about our containers.

• Here, we provide it with a format string to extract exactly the private IP
address of the container.

Container Networking Basics

Docker Fundamentals a2622f1 173 © 2015 Docker Inc



Pinging our container
We can test connectivity to the container using the IP address we've just discovered.
Let's see this now by using the ping tool.

$ ping <ipAddress>
64 bytes from <ipAddress>: icmp_req=1 ttl=64 time=0.085 ms
64 bytes from <ipAddress>: icmp_req=2 ttl=64 time=0.085 ms
64 bytes from <ipAddress>: icmp_req=3 ttl=64 time=0.085 ms

Container Networking Basics

Docker Fundamentals a2622f1 174 © 2015 Docker Inc



The old model (before Engine 1.9)
A container could use one of the following drivers:

• bridge (default)

• none

• host

• container

Container Networking Basics

Docker Fundamentals a2622f1 175 © 2015 Docker Inc



The default bridge

• By default, the container gets a virtual eth0 interface.
(In addition to its own private lo loopback interface.)

• That interface is provided by a veth pair.

• It is connected to the Docker bridge.
(Named docker0 by default; configurable with --bridge.)

• Addresses are allocated on a private, internal subnet.
(Docker uses 172.17.0.0/16 by default; configurable with --bip.)

• Outbound traffic goes through an iptables MASQUERADE rule.

• Inbound traffic goes through an iptables DNAT rule.

• The container can have its own routes, iptables rules, etc.

Container Networking Basics

Docker Fundamentals a2622f1 176 © 2015 Docker Inc



The null driver

• Container is started with docker run --net none ...

• It only gets the lo loopback interface. No eth0.

• It can't send or receive network traffic.

• Useful for isolated/untrusted workloads.

Container Networking Basics

Docker Fundamentals a2622f1 177 © 2015 Docker Inc



The host driver

• Container is started with docker run --net host ...

• It sees (and can access) the network interfaces of the host.

• it can bind any address, any port (for ill and for good).

• Network traffic doesn't have to go through NAT, bridge, or veth.

• Performance = native!

Container Networking Basics

Docker Fundamentals a2622f1 178 © 2015 Docker Inc



The container driver

• Container is started with docker run --net container:id ...

• It re-uses the network stack of another container.

• It shares with this other container the same interfaces, IP address(es),
routes, iptables rules, etc.

• Those containers can communicate over their lo interface.
(i.e. one can bind to 127.0.0.1 and the others can connect to it.)

Container Networking Basics

Docker Fundamentals a2622f1 179 © 2015 Docker Inc



The new model (since Engine 1.9.0)
DON'T PANIC: all the previous drivers are still available.

Docker now has the notion of a network, and a new top-level command to manipulate
and see those networks: docker network.

$ docker network ls
NETWORK ID          NAME                DRIVER
6bde79dfcf70        bridge              bridge
8d9c78725538        none                null
eb0eeab782f4        host                host
4c1ff84d6d3f        skynet              bridge
228a4355d548        darknet             overlay
3f1733d3e233        darkernet           overlay

Container Networking Basics

Docker Fundamentals a2622f1 180 © 2015 Docker Inc



What's in a network?

• Conceptually, a network is a virtual switch.

• It can be local (to a single Engine) or global (across multiple hosts).

• A network has an IP subnet associated to it.

• A network is managed by a driver.

• A network can have a custom IPAM (IP allocator).

• Containers with explicit names are discoverable via DNS.

• All the drivers that we have seen before are available.

• A new multi-host driver, overlay, is available.

• More drivers can be provided by plugins (OVS, VLAN...)

Container Networking Basics

Docker Fundamentals a2622f1 181 © 2015 Docker Inc



Creating a network
Let's create a network.

$ docker network create skynet
4c1ff84d6d3f1733d3e233ee039cac276f425a9d5228a4355d54878293a889ba

The network is now visible with the network ls command:

$ docker network ls
NETWORK ID          NAME                DRIVER
6bde79dfcf70        bridge              bridge
8d9c78725538        none                null
eb0eeab782f4        host                host
4c1ff84d6d3f        skynet              bridge

Container Networking Basics

Docker Fundamentals a2622f1 182 © 2015 Docker Inc



Placing containers on a network
We will create two named containers on this network.

First, let's create this container in the background.

$ docker run -dti --name t800 --net skynet alpine sh
8abb80e229ce8926c7223beb69699f5f34d6f1d438bfc5682db893e798046863

Now, create this other container in the foreground.

$ docker run -ti --name t1000 --net skynet ubuntu
root@0ecccdfa45ef:/#

Container Networking Basics

Docker Fundamentals a2622f1 183 © 2015 Docker Inc



Communication between containers
From our new container (t1000), we can resolve and ping the other one, using its
assigned name:

root@0ecccdfa45ef:/# ping t800
PING t800 (172.18.0.2) 56(84) bytes of data.
64 bytes from t800 (172.18.0.2): icmp_seq=1 ttl=64 time=0.221 ms
64 bytes from t800 (172.18.0.2): icmp_seq=2 ttl=64 time=0.114 ms
64 bytes from t800 (172.18.0.2): icmp_seq=3 ttl=64 time=0.114 ms
^C
--- t800 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.114/0.149/0.221/0.052 ms
root@0ecccdfa45ef:/#

How did that work?

Container Networking Basics

Docker Fundamentals a2622f1 184 © 2015 Docker Inc



Resolving container addresses
Currently, name resolution is implemented with /etc/hosts, and updating it each time
containers are added/removed.

root@0ecccdfa45ef:/# cat /etc/hosts
172.18.0.3  0ecccdfa45ef
127.0.0.1       localhost
::1     localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.18.0.2      t800
172.18.0.2      t800.skynet

In the future, this will probably be replaced by a dynamic resolver.

Container Networking Basics

Docker Fundamentals a2622f1 185 © 2015 Docker Inc



Connecting to multiple networks
Let's create another network.

$ docker network create resistance
955b84336816b8e2265a156905aa716f5d1d880516ceaba48b9331f8f4e706aa

Create a container in this network.

$ docker run --net resistance -ti --name sarahconnor ubuntu
root@4937d654a579:/#

This container cannot ping t800 (try it).

Now, from another terminal, connect t800 to the resistance:

$ docker network connect resistance t800

Then try again to ping t800 from sarahconnor. It works!

Container Networking Basics

Docker Fundamentals a2622f1 186 © 2015 Docker Inc



Implementation details
With the "bridge" network driver, each container joining a network receives a new virtual
interface.

Each container receives a new virtual interface:

$ docker run --net container:t800 alpine ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
73: eth0@if74: <BROADCAST,MULTICAST,...> mtu 1500 qdisc noqueue state UP

link/ether 02:42:ac:12:00:02 brd ff:ff:ff:ff:ff:ff
inet 172.18.0.2/16 scope global eth0

valid_lft forever preferred_lft forever
inet6 fe80::42:acff:fe12:2/64 scope link

valid_lft forever preferred_lft forever
84: eth1@if85: <BROADCAST,MULTICAST,...> mtu 1500 qdisc noqueue state UP

link/ether 02:42:ac:13:00:03 brd ff:ff:ff:ff:ff:ff
inet 172.19.0.3/16 scope global eth1

valid_lft forever preferred_lft forever
inet6 fe80::42:acff:fe13:3/64 scope link

valid_lft forever preferred_lft forever

Container Networking Basics

Docker Fundamentals a2622f1 187 © 2015 Docker Inc



Multi-host networking
Out of the scope for this intro-level workshop!

Very short instructions:

• deploy a key/value store (Consul, Etc, Zookeeper)

• add two extra flags to your Docker Engine

• you can now create networks using the overlay driver!

When you create a network on one host with the overlay driver, it appears automatically
on all other hosts.

Containers placed on the same networks are able to resolve and ping as if they were
local.

The overlay network is based on VXLAN and store neighbor info in a key/value store.

Container Networking Basics

Docker Fundamentals a2622f1 188 © 2015 Docker Inc



Section summary
We've learned how to:

• Expose a network port.

• Manipulate container networking basics.

• Find a container's IP address.

• Create private networks for groups of containers.

NOTE: Later we will see another mechanism to interconnect containers using the
link primitive.

Container Networking Basics

Docker Fundamentals a2622f1 189 © 2015 Docker Inc



Local Development Workflow with Docker

Local Development Workflow with Docker

Docker Fundamentals a2622f1 190 © 2015 Docker Inc



Lesson 15: Local Development Workflow with Docker
Objectives

At the end of this lesson, you will be able to:

• Share code between container and host.

• Use a simple local development workflow.

Local Development Workflow with Docker

Docker Fundamentals a2622f1 191 © 2015 Docker Inc



Using a Docker container for local development
Never again:

• "Works on my machine"

• "Not the same version"

• "Missing dependency"

By using Docker containers, we will get a consistent development environment.

Local Development Workflow with Docker

Docker Fundamentals a2622f1 192 © 2015 Docker Inc



Our "namer" application

• The code is available on https://github.com/jpetazzo/namer.

• The image jpetazzo/namer is automatically built by the Docker Hub.

Let's run it with:

$ docker run -dP jpetazzo/namer:master

Check the port number with docker ps and open the application.

Local Development Workflow with Docker

Docker Fundamentals a2622f1 193 © 2015 Docker Inc

https://github.com/jpetazzo/namer


Let's look at the code
Let's download our application's source code.

$ git clone https://github.com/jpetazzo/namer
$ cd namer
$ ls -1
company_name_generator.rb
config.ru
docker-compose.yml
Dockerfile
Gemfile

Local Development Workflow with Docker

Docker Fundamentals a2622f1 194 © 2015 Docker Inc



Where's my code?
According to the Dockerfile, the code is copied into /src :

FROM ruby
MAINTAINER Education Team at Docker <education@docker.com>

COPY . /src
WORKDIR /src
RUN bundler install

CMD ["rackup", "--host", "0.0.0.0"]
EXPOSE 9292

We want to make changes inside the container without rebuilding it each time.

For that, we will use a volume.

Local Development Workflow with Docker

Docker Fundamentals a2622f1 195 © 2015 Docker Inc



Our first volume
We will tell Docker to map the current directory to /src in the container.

$ docker run -d -v $(pwd):/src -p 80:9292 jpetazzo/namer:master

• The -d flag indicates that the container should run in detached mode (in
the background).

• The -v flag provides volume mounting inside containers.

• The -p flag maps port 9292 inside the container to port 80 on the host.

• jpetazzo/namer is the name of the image we will run.

• We don't need to give a command to run because the Dockerfile already
specifies rackup.

Local Development Workflow with Docker

Docker Fundamentals a2622f1 196 © 2015 Docker Inc



Mounting volumes inside containers
The -v flag mounts a directory from your host into your Docker container. The flag
structure is:

[host-path]:[container-path]:[rw|ro]

• If [host-path] or [container-path] doesn't exist it is created.

• You can control the write status of the volume with the ro and rw
options.

• If you don't specify rw or ro, it will be rw by default.

There will be a full chapter about volumes!

Local Development Workflow with Docker

Docker Fundamentals a2622f1 197 © 2015 Docker Inc



Testing the development container
Now let us see if our new container is running.

$ docker ps
CONTAINER ID  IMAGE                 COMMAND CREATED       STATUS
PORTS                NAMES
045885b68bc5  training/namer:latest rackup  3 seconds ago Up 3 seconds
0.0.0.0:80->9292/tcp condescending_shockley

Local Development Workflow with Docker

Docker Fundamentals a2622f1 198 © 2015 Docker Inc



Viewing our application
Now let's browse to our web application on:

http://<yourHostIP>:80

We can see our company naming application.

Local Development Workflow with Docker

Docker Fundamentals a2622f1 199 © 2015 Docker Inc



Making a change to our application
Our customer really doesn't like the color of our text. Let's change it.

$ vi company_name_generator.rb

And change

color: royalblue;

To:

color: red;

Local Development Workflow with Docker

Docker Fundamentals a2622f1 200 © 2015 Docker Inc



Refreshing our application
Now let's refresh our browser:

http://<yourHostIP>:80

We can see the updated color of our company naming application.

Local Development Workflow with Docker

Docker Fundamentals a2622f1 201 © 2015 Docker Inc



Improving the workflow with Compose

• You can also start the container with the following command:

$ docker-compose up -d

• This works thanks to the Compose file, docker-compose.yml:

www:
build: .
volumes:

- .:/src
ports:

- 9292:9292

Local Development Workflow with Docker

Docker Fundamentals a2622f1 202 © 2015 Docker Inc



Why Compose?

• Specifying all those "docker run" parameters is tedious.

• And error-prone.

• We can "encode" those parameters in a "Compose file."

• When you see a docker-compose.yml file, you know that you can
use docker-compose up.

• Compose can also deal with complex, multi-container apps.
(More on this later.)

Local Development Workflow with Docker

Docker Fundamentals a2622f1 203 © 2015 Docker Inc



Workflow explained
We can see a simple workflow:

1. Build an image containing our development environment.

(Rails, Django...)

2. Start a container from that image.

Use the -v flag to mount source code inside the container.

3. Edit source code outside the containers, using regular tools.

(vim, emacs, textmate...)

4. Test application.

(Some frameworks pick up changes automatically.

Others require you to Ctrl-C + restart after each modification.)

5. Repeat last two steps until satisfied.

6. When done, commit+push source code changes.

(You are using version control, right?)

Local Development Workflow with Docker

Docker Fundamentals a2622f1 204 © 2015 Docker Inc



Debugging inside the container
In 1.3, Docker introduced a feature called docker exec.

It allows users to run a new process in a container which is already running.

It is not meant to be used for production (except in emergencies, as a sort of pseudo-
SSH), but it is handy for development.

You can get a shell prompt inside an existing container this way.

Local Development Workflow with Docker

Docker Fundamentals a2622f1 205 © 2015 Docker Inc



docker exec example
$ # You can run ruby commands in the area the app is running and more!
$ docker exec -it <yourContainerId> bash
root@5ca27cf74c2e:/opt/namer# irb
irb(main):001:0> [0, 1, 2, 3, 4].map {|x| x ** 2}.compact
=> [0, 1, 4, 9, 16]
irb(main):002:0> exit

Local Development Workflow with Docker

Docker Fundamentals a2622f1 206 © 2015 Docker Inc



Stopping the container
Now that we're done let's stop our container.

$ docker stop <yourContainerID>

And remove it.

$ docker rm <yourContainerID>

Local Development Workflow with Docker

Docker Fundamentals a2622f1 207 © 2015 Docker Inc



Section summary
We've learned how to:

• Share code between container and host.

• Set our working directory.

• Use a simple local development workflow.

Local Development Workflow with Docker

Docker Fundamentals a2622f1 208 © 2015 Docker Inc



Working with Volumes

Working with Volumes

Docker Fundamentals a2622f1 209 © 2015 Docker Inc



Lesson 16: Working with Volumes
Objectives

At the end of this lesson, you will be able to:

• Create containers holding volumes.

• Share volumes across containers.

• Share a host directory with one or many containers.

Working with Volumes

Docker Fundamentals a2622f1 210 © 2015 Docker Inc



Working with Volumes
Docker volumes can be used to achieve many things, including:

• Bypassing the copy-on-write system to obtain native disk I/O
performance.

• Bypassing copy-on-write to leave some files out of docker commit.

• Sharing a directory between multiple containers.

• Sharing a directory between the host and a container.

• Sharing a single file between the host and a container.

Working with Volumes

Docker Fundamentals a2622f1 211 © 2015 Docker Inc



Volumes are special directories in a container
Volumes can be declared in two different ways.

• Within a Dockerfile, with a VOLUME instruction.

VOLUME /var/lib/postgresql

• On the command-line, with the -v flag for docker run.

$ docker run -d -v /var/lib/postgresql \
training/postgresql

In both cases, /var/lib/postgresql (inside the container) will be a volume.

Working with Volumes

Docker Fundamentals a2622f1 212 © 2015 Docker Inc



Volumes bypass the copy-on-write system
Volumes act as passthroughs to the host filesystem.

• The I/O performance on a volume is exactly the same as I/O
performance on the Docker host.

• When you docker commit, the content of volumes is not brought into
the resulting image.

• If a RUN instruction in a Dockerfile changes the content of a volume,
those changes are not recorded neither.

Working with Volumes

Docker Fundamentals a2622f1 213 © 2015 Docker Inc



Volumes can be shared across containers
You can start a container with exactly the same volumes as another one.

The new container will have the same volumes, in the same directories.

They will contain exactly the same thing, and remain in sync.

Under the hood, they are actually the same directories on the host anyway.

This is done using the --volumes-from flag for docker run.

$ docker run -it --name alpha -v /var/log ubuntu bash
root@99020f87e695:/# date >/var/log/now

In another terminal, let's start another container with the same volume.

$ docker run --volumes-from alpha ubuntu cat /var/log/now
Fri May 30 05:06:27 UTC 2014

Working with Volumes

Docker Fundamentals a2622f1 214 © 2015 Docker Inc



Volumes exist independently of containers
If a container is stopped, its volumes still exist and are available.

In the last exemple, it doesn't matter if container alpha is running or not.

Since Docker 1.9, we can see all existing volumes and manipulate them:

$ docker volume ls
DRIVER              VOLUME NAME
local               5b0b65e4316da67c2d471086640e6005ca2264f3...
local               vol02
local               vol04
local               13b59c9936d78d109d094693446e174e5480d973...

Some of those volume names were explicit (vol02, vol04).

The others (the hex IDs) were generated automatically by Docker.

Working with Volumes

Docker Fundamentals a2622f1 215 © 2015 Docker Inc



Data containers (before Engine 1.9)
A data container is a container created for the sole purpose of referencing one (or many)
volumes.

It is typically created with a no-op command:

$ docker run --name files -v /var/www busybox true
$ docker run --name logs -v /var/log busybox true

• We created two data containers.

• They are using the busybox image, a tiny image.

• We used the command true, possibly the simplest command in the
world!

• We named each container to reference them easily later.

Working with Volumes

Docker Fundamentals a2622f1 216 © 2015 Docker Inc



Using data containers
Data containers are used by other containers thanks to --volumes-from.

Consider the following (fictitious) example, using the previously created volumes:

$ docker run -d --volumes-from files --volumes-from logs webserver
$ docker run -d --volumes-from files ftpserver
$ docker run -d --volumes-from logs lumberjack

• The first container runs a webserver, serving content from /var/www
and logging to /var/log.

• The second container runs a FTP server, allowing to upload content to the
same /var/www path.

• The third container collects the logs, and sends them to logstash, a log
storage and analysis system, using the lumberjack protocol.

Working with Volumes

Docker Fundamentals a2622f1 217 © 2015 Docker Inc



Named volumes (since Engine 1.9)

• We can now create and manipulate volumes as first-class concepts.

• Volumes can be created without a container, then used in multiple
containers.

Let's create volumes directly (without data containers).

$ docker volume create --name=files
files
$ docker volume create --name=logs
logs

Volumes are not anchored to a specific path.

Working with Volumes

Docker Fundamentals a2622f1 218 © 2015 Docker Inc



Using our named volumes

• Volumes are used with the -v option.

• When a host path does not contain a /, it is considered to be a volume
name.

Let's start the same containers as before:

$ docker run -d -v files:/var/www -v logs:/var/log webserver
$ docker run -d -v files:/home/ftp ftpserver
$ docker run -d -v logs:/var/log lunmberjack

Again: volumes are not anchored to a specific path.

(This can be a good or a bad thing.)

Working with Volumes

Docker Fundamentals a2622f1 219 © 2015 Docker Inc



Managing volumes explicitly
In some cases, you want a specific directory on the host to be mapped inside the
container:

• You want to manage storage and snapshots yourself.

(With LVM, or a SAN, or ZFS, or anything else!)

• You have a separate disk with better performance (SSD) or resiliency
(EBS) than the system disk, and you want to put important data on that
disk.

• You want to share your source directory between your host (where the
source gets edited) and the container (where it is compiled or executed).

Wait, we already met the last use-case in our example development workflow! Nice.

Working with Volumes

Docker Fundamentals a2622f1 220 © 2015 Docker Inc



Sharing a directory between the host and a container
The previous example would become something like this:

$ mkdir -p /mnt/files /mnt/logs
$ docker run -d -v /mnt/files:/var/www -v /mnt/logs:/var/log webserver
$ docker run -d -v /mnt/files:/home/ftp ftpserver
$ docker run -d -v /mnt/logs:/var/log lunmberjack

Note that the paths must be absolute.

Those volumes can also be shared with --volumes-from.

Working with Volumes

Docker Fundamentals a2622f1 221 © 2015 Docker Inc



Migrating data with --volumes-from
• Scenario: migrating from Redis 2.8 to Redis 3.0.

• We have a container (myredis) running Redis 2.8.

• Stop the myredis container.

• Start a new container, using the Redis 3.0 image, and the --volumes-
from option.

• The new container will inherit the data of the old one.

• Newer containers can use --volumes-from too.

Working with Volumes

Docker Fundamentals a2622f1 222 © 2015 Docker Inc



What happens when you remove containers with
volumes?

• With Engine versions prior 1.9, volumes would be orphaned when the last
container referencing them is destroyed.

• Orphaned volumes are not deleted, but you cannot access them.

(Unless you do some serious archeology in /var/lib/docker.)

• Since Engine 1.9, orphaned volumes can be listed with docker volume
ls and mounted to containers with -v.

Ultimately, you are the one responsible for logging, monitoring, and backup of your
volumes.

Working with Volumes

Docker Fundamentals a2622f1 223 © 2015 Docker Inc



Checking volumes defined by an image
Wondering if an image has volumes? Just use docker inspect:

$ # docker inspect training/datavol
[{

"config": {
. . .
"Volumes": {

"/var/webapp": {}
},
. . .

}]

Working with Volumes

Docker Fundamentals a2622f1 224 © 2015 Docker Inc



Checking volumes used by a container
To look which paths are actually volumes, and to what they are bound, use docker
inspect (again):

$ docker inspect <yourContainerID>
[{

"ID": "<yourContainerID>",
. . .

"Volumes": {
"/var/webapp": "/var/lib/docker/vfs/dir/

f4280c5b6207ed531efd4cc673ff620cef2a7980f747dbbcca001db61de04468"
},
"VolumesRW": {

"/var/webapp": true
},

}]

• We can see that our volume is present on the file system of the Docker
host.

Working with Volumes

Docker Fundamentals a2622f1 225 © 2015 Docker Inc



Sharing a single file between the host and a container
The same -v flag can be used to share a single file.

One of the most interesting examples is to share the Docker control socket.

$ docker run -it -v /var/run/docker.sock:/var/run/docker.sock docker sh

Warning: when using such mounts, the container gains root-like access to the host. It
can potentially do bad things.

Working with Volumes

Docker Fundamentals a2622f1 226 © 2015 Docker Inc



Section summary
We've learned how to:

• Create and manage volumes.

• Share volumes across containers.

• Share a host directory with one or many containers.

Working with Volumes

Docker Fundamentals a2622f1 227 © 2015 Docker Inc



Connecting Containers

Connecting Containers

Docker Fundamentals a2622f1 228 © 2015 Docker Inc



Lesson 17: Connecting containers
Objectives

At the end of this lesson, you will be able to:

• Create links between containers.

• Use names and links to communicate across containers.

• Use these features to decouple app dependencies and reduce
complexity.

Connecting Containers

Docker Fundamentals a2622f1 229 © 2015 Docker Inc



Connecting containers

• We will learn how to use names and links to expose one container's
port(s) to another.

• Why? So each component of your app (e.g., DB vs. web app) can run
independently with its own dependencies.

Connecting Containers

Docker Fundamentals a2622f1 230 © 2015 Docker Inc



What we've got planned

• We're going to get two images: a Redis (key-value store) image and a
Ruby on Rails application image.

• We're going to start containers from each image.

• We're going to link the container running our Rails application and the
container running Redis using Docker's link primitive.

Connecting Containers

Docker Fundamentals a2622f1 231 © 2015 Docker Inc



Launch a container from the redis image.
Let's launch a container from the redis image.

$ docker run -d --name mycache redis
<yourContainerID>

Let's check the container is running:

$ docker ps -l
CONTAINER ID        IMAGE               COMMAND             CREATED
STATUS              PORTS               NAMES
9efd72a4f320        redis:latest        redis-server        5 seconds ago       Up
4 seconds        6379/tcp            mycache

• Our container is launched and running an instance of Redis.

• Using the --name flag we've given it a name: mycache. Remember that!
Container names are unique. We're going to use that name shortly.

Connecting Containers

Docker Fundamentals a2622f1 232 © 2015 Docker Inc



Trying our Rails app
Try to run the application, without any other preparation:

$ docker run -dP nathanleclaire/redisonrails

Check the port number with docker ps, and connect to it.

It doesn't work!

Connecting Containers

Docker Fundamentals a2622f1 233 © 2015 Docker Inc



How our app connects to Redis
If we pull the code, we will see the following line:

$redis = Redis.new(:host => 'redis', :port => 6379)

• This means "try to connect to 'redis'".

• Not 192.168.123.234.

• Not redis.prod.mycompany.net.

Obviously it doesn't work.

Connecting Containers

Docker Fundamentals a2622f1 234 © 2015 Docker Inc



Launch a container from the nathanleclaire/
redisonrails image.

Let's launch a container from the nathanleclaire/redisonrails image, without
links to start.

In the Rails console we can see that $redis exists, but we did not link to any actual
Redis instance.

$ docker run -it nathanleclaire/redisonrails rails console
Loading development environment (Rails 4.0.2)
irb(main):001:0> $redis
=> #<Redis client v3.1.0 for redis://redis:6379/0>
irb(main):002:0> $redis.set('foo', 'bar')
SocketError: getaddrinfo: Name or service not known

from /usr/local/lib/ruby/gems/2.1.0/gems/redis-3.1.0/lib/redis/connection/
ruby.rb:152:in `getaddrinfo'

from /usr/local/lib/ruby/gems/2.1.0/gems/redis-3.1.0/lib/redis/connection/
ruby.rb:152:in `connect'

from /usr/local/lib/ruby/gems/2.1.0/gems/redis-3.1.0/lib/redis/connection/
ruby.rb:211:in `connect'

from /usr/local/lib/ruby/gems/2.1.0/gems/redis-3.1.0/lib/redis/client.rb:304:in
`establish_connection'

.....

Without access to a Redis server at the proper location the initialized $redis object
will not work.

Connecting Containers

Docker Fundamentals a2622f1 235 © 2015 Docker Inc



Launch and link a container
Docker allows to specify links.

Links indicate an intent: "this container will connect to this other container."

Here is how to create our first link:

$ docker run -ti --link mycache:redis alpine sh

In this container, we can communicate with mycache using the redis DNS alias.

Connecting Containers

Docker Fundamentals a2622f1 236 © 2015 Docker Inc



DNS
Docker has created a DNS entry for the container, resolving to its internal IP address.

$ docker run -it --link mycache:redis nathanleclaire/redisonrails ping redis
PING redis (172.17.0.29): 56 data bytes
64 bytes from 172.17.0.29: icmp_seq=0 ttl=64 time=0.164 ms
64 bytes from 172.17.0.29: icmp_seq=1 ttl=64 time=0.122 ms
64 bytes from 172.17.0.29: icmp_seq=2 ttl=64 time=0.086 ms
^C--- redis ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.086/0.124/0.164/0.032 ms

Connecting Containers

Docker Fundamentals a2622f1 237 © 2015 Docker Inc



Access our container with the Rails console
You can skip this example if you're not comfortable with Ruby.

$ docker run -it --link mycache:redis \
nathanleclaire/redisonrails rails console

Loading development environment (Rails 4.0.2)
irb(main):001:0> $redis
=> #<Redis client v3.1.0 for redis://redis:6379/0>
irb(main):002:0> $redis.set('a', 'b')
=> "OK"
irb(main):003:0> $redis.get('a')
=> "b"
irb(main):004:0> $redis.set('someHash', {:foo => 'bar', :spam => 'eggs'})
=> "OK"
irb(main):005:0> $redis.get('someHash')
=> "{:foo=>\"bar\", :spam=>\"eggs\"}"
irb(main):006:0> $redis.set('users', ['Aaron', 'Jerome', 'Nathan'])
=> "OK"
irb(main):007:0> $redis.get('users')
=> "[\"Aaron\", \"Jerome\", \"Nathan\"]"
irb(main):008:0> exit

Woot! That's more like it.

• The --link flag connects one container to another.

• We specify the name of the container to link to, mycache, and an alias
for the link, redis, in the format name:alias.

• We can use $redis in an ActiveRecord class to create data models
that have the speed on in-memory lookups.

Connecting Containers

Docker Fundamentals a2622f1 238 © 2015 Docker Inc



More about our link - Environment variables
In addition to the DNS information, Docker will automatically set environment variables
in our container, giving extra details about the link.

Let's see that information:

$ docker run --link mycache:redis alpine env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=0738e57b771e
REDIS_PORT=tcp://172.17.0.120:6379
REDIS_PORT_6379_TCP=tcp://172.17.0.120:6379
REDIS_PORT_6379_TCP_ADDR=172.17.0.120
REDIS_PORT_6379_TCP_PORT=6379
REDIS_PORT_6379_TCP_PROTO=tcp
REDIS_NAME=/dreamy_wilson/redis
REDIS_ENV_REDIS_VERSION=2.8.13
REDIS_ENV_REDIS_DOWNLOAD_URL=http://download.redis.io/releases/redis-2.8.13.tar.gz
REDIS_ENV_REDIS_DOWNLOAD_SHA1=a72925a35849eb2d38a1ea076a3db82072d4ee43
HOME=/
RUBY_MAJOR=2.1
RUBY_VERSION=2.1.2

• Each variables is prefixed with the link alias: redis.

• Includes connection information PLUS any environment variables set in
the mycache container via ENV instructions.

Connecting Containers

Docker Fundamentals a2622f1 239 © 2015 Docker Inc



Starting our Rails application
Now that we've poked around a bit let's start the application itself in a fresh container:

$ docker run -d -p 80:3000 --link mycache:redis nathanleclaire/redisonrails

Now let's check the container is running.

$ docker ps -l

Connecting Containers

Docker Fundamentals a2622f1 240 © 2015 Docker Inc



Starting our Rails application
Our homepage controller contains the following code.

class WelcomeController < ApplicationController
def index

views = $redis.get('views').to_i()
views += 1
$redis.set('views', views)
@page_views = views

end
end

Connecting Containers

Docker Fundamentals a2622f1 241 © 2015 Docker Inc



Viewing our Rails application
Finally, let's browse to our application and confirm it's working.

http://<yourHostIP>

Connecting Containers

Docker Fundamentals a2622f1 242 © 2015 Docker Inc



Tidying up
Finally let's tidy up our database.

$ docker kill mycache
. . .
$ docker rm mycache

• We can use the container name to stop and remove them.

• We removed it so we can re-use its name later if we want.

(Remember container names are unique!)

Connecting Containers

Docker Fundamentals a2622f1 243 © 2015 Docker Inc



Section summary
We've learned how to:

• Create links between containers.

• Use names and links to communicate across containers.

• Use these features to decouple app dependencies and reduce
complexity.

Connecting Containers

Docker Fundamentals a2622f1 244 © 2015 Docker Inc



Ambassadors

Ambassadors

Docker Fundamentals a2622f1 245 © 2015 Docker Inc



Lesson 18: Ambassadors
Objectives

At the end of this lesson, you will be able to:

• Understand the ambassador pattern and what it is used for (service
portability).

Ambassadors

Docker Fundamentals a2622f1 246 © 2015 Docker Inc



Ambassadors
We've already seen a couple of ways we can manage our application architecture in
Docker.

• With links.

• Using host-based volumes.

• Using data volumes shared between containers.

We're now going to see a pattern for service portability we call: ambassadors.

Ambassadors

Docker Fundamentals a2622f1 247 © 2015 Docker Inc



Introduction to Ambassadors
The ambassador pattern:

• Takes advantage of Docker's lightweight linkages and abstracts
connections between services.

• Allows you to manage services without hard-coding connection
information inside applications.

To do this, instead of directly connecting containers you insert ambassador containers.

Ambassadors

Docker Fundamentals a2622f1 248 © 2015 Docker Inc



Ambassadors

Docker Fundamentals a2622f1 249 © 2015 Docker Inc



Interacting with ambassadors

• The web application container uses a normal link to connect to the
ambassador.

• The database container is linked with an ambassador as well.

• For both containers, there is no difference between normal operation and
operation with ambassador containers.

• If the database container is moved, its new location will be tracked by the
ambassador containers, and the web application container will still be
able to connect, without reconfiguration.

Ambassadors

Docker Fundamentals a2622f1 250 © 2015 Docker Inc



Implementing the ambassador pattern
Different deployments will use different underlying technologies.

• On-premise deployments with a trusted network can track container
locations in e.g. Zookeeper, and generate HAproxy configurations each
time a location key changes.

• Public cloud deployments or deployments across unsafe networks can
add TLS encryption.

• Ad-hoc deployments can use a master-less discovery protocol like avahi
to register and discover services.

• It is also possible to do one-shot reconfiguration of the ambassadors. It is
slightly less dynamic but has much less requirements.

Ambassadors

Docker Fundamentals a2622f1 251 © 2015 Docker Inc



Section summary
We've learned how to:

• Understand the ambassador pattern and what it is used for (service
portability).

For more information about the ambassador pattern, including demos on Swarm and
ECS: look for DVO317 (AWS re:invent talk).

Ambassadors

Docker Fundamentals a2622f1 252 © 2015 Docker Inc

https://www.youtube.com/watch?v=7CZFpHUPqXw


Compose For Development Stacks

Compose For Development Stacks

Docker Fundamentals a2622f1 253 © 2015 Docker Inc



Lesson 19: Using Docker Compose for Development
Stacks

Objectives

Dockerfiles are great to build a single container.

But when you want to start a complex stack made of multiple containers, you need a
different tool. This tool is Docker Compose.

In this lesson, you will use Compose to bootstrap a development environment.

Compose For Development Stacks

Docker Fundamentals a2622f1 254 © 2015 Docker Inc



What is Docker Compose?
Docker Compose (formerly known as fig) is an external tool. It is optional (you do not
need Compose to run Docker and containers) but we recommend it highly!

The general idea of Compose is to enable a very simple, powerful onboarding workflow:

1. Clone your code.

2. Run docker-compose up.

3. Your app is up and running!

Compose For Development Stacks

Docker Fundamentals a2622f1 255 © 2015 Docker Inc



Compose overview
This is how you work with Compose:

• You describe a set (or stack) of containers in a YAML file called docker-
compose.yml.

• You run docker-compose up.

• Compose automatically pulls images, builds containers, and starts them.

• Compose can set up links, volumes, and other Docker options for you.

• Compose can run the containers in the background, or in the foreground.

• When containers are running in the foreground, their aggregated output is
shown.

Before diving in, let's see a small example of Compose in action.

Compose For Development Stacks

Docker Fundamentals a2622f1 256 © 2015 Docker Inc



Compose in action

Compose For Development Stacks

Docker Fundamentals a2622f1 257 © 2015 Docker Inc



Checking if Compose is installed
If you are using the official training virtual machines, Compose has been pre-installed.

You can always check that it is installed by running:

$ docker-compose --version

Compose For Development Stacks

Docker Fundamentals a2622f1 258 © 2015 Docker Inc



Installing Compose
If you want to install Compose on your machine, there are (at least) two methods.

Compose is written in Python. If you have pip and use it to manage other Python
packages, you can install compose with:

$ sudo pip install docker-compose

(Note: if you are familiar with virtualenv, you can also use it to install Compose.)

If you do not have pip, or do not want to use it to install Compose, you can also
retrieve an all-in-one binary file:

$ curl -L \
https://github.com/docker/compose/releases/download/1.2.0/docker-compose-`uname

-s`-`uname -m` \
> /usr/local/bin/docker-compose

$ chmod +x /usr/local/bin/docker-compose

Compose For Development Stacks

Docker Fundamentals a2622f1 259 © 2015 Docker Inc



Launching Our First Stack with Compose
First step: clone the source code for the app we will be working on.

$ cd
$ git clone git://github.com/jpetazzo/trainingwheels
...
$ cd trainingwheels

Second step: start your app.

$ docker-compose up

Watch Compose build and run your app with the correct parameters, including linking
the relevant containers together.

Compose For Development Stacks

Docker Fundamentals a2622f1 260 © 2015 Docker Inc



Launching Our First Stack with Compose
Verify that the app is running at http://<yourHostIP>:5000.

Compose For Development Stacks

Docker Fundamentals a2622f1 261 © 2015 Docker Inc



Stopping the app
When you hit ^C, Compose tries to gracefully terminate all of the containers.

After ten seconds (or if you press ^C again) it will forcibly kill them.

Compose For Development Stacks

Docker Fundamentals a2622f1 262 © 2015 Docker Inc



The docker-compose.yml file
Here is the file used in the demo:

www:
build: www
ports:

- 8000:5000
links:

- redis
user: nobody
command: python counter.py
volumes:

- ./www:/src

redis: image: redis

Each section of the YAML file (web, redis) corresponds to a container.

Let's see what can be in a section.

Compose For Development Stacks

Docker Fundamentals a2622f1 263 © 2015 Docker Inc



Containers in docker-compose.yml
Each section of the YAML file must contain either build, or image.

• build indicates a path containing a Dockerfile.

• image indicates an image name (local, or on a registry).

The other parameters are optional.

They encode the parameters that you would typically add to docker run.

Sometimes they have several minor improvements.

Compose For Development Stacks

Docker Fundamentals a2622f1 264 © 2015 Docker Inc



Container parameters

• command indicates what to run (like CMD in a Dockerfile).

• ports translates to one (or multiple) -p options to map ports.
You can specify local ports (i.e. x:y to expose public port x).

• volumes translates to one (or multiple) -v options.
You can use relative paths here.

• links translates to one (or multiple) --link options.
You can refer to other Compose containers by their name.

For the full list, check http://docs.docker.com/compose/yml/.

Compose For Development Stacks

Docker Fundamentals a2622f1 265 © 2015 Docker Inc

http://docs.docker.com/compose/yml/


Compose commands
We already saw docker-compose up, but another one is docker-compose
build. It will execute docker build for all containers mentioning a build path.

It is common to execute the build and run steps in sequence:

docker-compose build && docker-compose up

Another common option is to start containers in the background:

docker-compose up -d

Compose For Development Stacks

Docker Fundamentals a2622f1 266 © 2015 Docker Inc



Check container status
It can be tedious to check the status of your containers with docker ps, especially
when running multiple apps at the same time.

Compose makes it easier; with docker-compose ps you will see only the status of
the containers of the current stack:

$ docker-compose ps
Name            Command      State    Ports

------------------------------------------------
figdemo_redis_1   redis-server    Exit 0
figdemo_www_1     gunicorn --bi   Exit 0

Compose For Development Stacks

Docker Fundamentals a2622f1 267 © 2015 Docker Inc



Cleaning up
If you have started your application in the background with Compose and want to stop
it easily, you can use the kill command:

$ docker-compose kill

Likewise, docker-compose rm will let you remove containers (after confirmation):

$ docker-compose rm
Going to remove trainingwheels_redis_1, trainingwheels_www_1
Are you sure? [yN] y
Removing trainingwheels_redis_1...
Removing trainingwheels_www_1...

Compose For Development Stacks

Docker Fundamentals a2622f1 268 © 2015 Docker Inc



Special handling of volumes
Compose is smart. If your container uses volumes, when you restart your application,
Compose will create a new container, but carefully re-use the volumes it was using
previously.

This makes it easy to upgrade a stateful service, by pulling its new image and just
restarting your stack with Compose.

Compose For Development Stacks

Docker Fundamentals a2622f1 269 © 2015 Docker Inc



Advanced Dockerfiles

Advanced Dockerfiles

Docker Fundamentals a2622f1 270 © 2015 Docker Inc



Lesson 20: Advanced Dockerfiles
Objectives

We have seen simple Dockerfiles to illustrate how Docker build container images. In this
chapter, we will see:

• The syntax and keywords that can be used in Dockerfiles.

• Tips and tricks to write better Dockerfiles.

Advanced Dockerfiles

Docker Fundamentals a2622f1 271 © 2015 Docker Inc



Dockerfile usage summary

• Dockerfile instructions are executed in order.

• Each instruction creates a new layer in the image.

• Instructions are cached. If no changes are detected then the instruction is
skipped and the cached layer used.

• The FROM instruction MUST be the first non-comment instruction.

• Lines starting with # are treated as comments.

• You can only have one CMD and one ENTRYPOINT instruction in a
Dockerfile.

Advanced Dockerfiles

Docker Fundamentals a2622f1 272 © 2015 Docker Inc



The FROM instruction

• Specifies the source image to build this image.

• Must be the first instruction in the Dockerfile, except for comments.

Advanced Dockerfiles

Docker Fundamentals a2622f1 273 © 2015 Docker Inc



The FROM instruction
Can specify a base image:

FROM ubuntu

An image tagged with a specific version:

FROM ubuntu:12.04

A user image:

FROM training/sinatra

Or self-hosted image:

FROM localhost:5000/funtoo

Advanced Dockerfiles

Docker Fundamentals a2622f1 274 © 2015 Docker Inc



More about FROM

• The FROM instruction can be specified more than once to build multiple
images.

FROM ubuntu:14.04
. . .
FROM fedora:20
. . .

Each FROM instruction marks the beginning of the build of a new image.

The -t command-line parameter will only apply to the last image.

• If the build fails, existing tags are left unchanged.

• An optional version tag can be added after the name of the image.

E.g.: ubuntu:14.04.

Advanced Dockerfiles

Docker Fundamentals a2622f1 275 © 2015 Docker Inc



The MAINTAINER instruction
The MAINTAINER instruction tells you who wrote the Dockerfile.

MAINTAINER Docker Education Team <education@docker.com>

It's optional but recommended.

Advanced Dockerfiles

Docker Fundamentals a2622f1 276 © 2015 Docker Inc



The RUN instruction
The RUN instruction can be specified in two ways.

With shell wrapping, which runs the specified command inside a shell, with /bin/sh
-c:

RUN apt-get update

Or using the exec method, which avoids shell string expansion, and allows execution in
images that don't have /bin/sh:

RUN [ "apt-get", "update" ]

Advanced Dockerfiles

Docker Fundamentals a2622f1 277 © 2015 Docker Inc



More about the RUN instruction
RUN will do the following:

• Execute a command.

• Record changes made to the filesystem.

• Work great to install libraries, packages, and various files.

RUN will NOT do the following:

• Record state of processes.

• Automatically start daemons.

If you want to start something automatically when the container runs, you should use
CMD and/or ENTRYPOINT.

Advanced Dockerfiles

Docker Fundamentals a2622f1 278 © 2015 Docker Inc



Collapsing layers
It is possible to execute multiple commands in a single step:

RUN apt-get update && apt-get install -y wget && apt-get clean

It is also possible to break a command on multiple lines:

It is possible to execute multiple commands in a single step:

RUN apt-get update \
&& apt-get install -y wget \
&& apt-get clean

Advanced Dockerfiles

Docker Fundamentals a2622f1 279 © 2015 Docker Inc



The EXPOSE instruction
The EXPOSE instruction tells Docker what ports are to be published in this image.

EXPOSE 8080

• All ports are private by default.

• The Dockerfile doesn't control if a port is publicly available.

• When you docker run -p <port> ..., that port becomes public.

(Even if it was not declared with EXPOSE.)

• When you docker run -P ... (without port number), all ports
declared with EXPOSE become public.

A public port is reachable from other containers and from outside the host.

A private port is not reachable from outside.

Advanced Dockerfiles

Docker Fundamentals a2622f1 280 © 2015 Docker Inc



The ADD instruction
The ADD instruction adds files and content from your host into the image.

ADD /src/webapp /opt/webapp

This will add the contents of the /src/webapp/ directory to the /opt/webapp
directory in the image.

Note: /src/webapp/ is not relative to the host filesystem, but to the directory
containing the Dockerfile.

Otherwise, a Dockerfile could succeed on host A, but fail on host B.

The ADD instruction can also be used to get remote files.

ADD http://www.example.com/webapp /opt/

This would download the webapp file and place it in the /opt directory.

Advanced Dockerfiles

Docker Fundamentals a2622f1 281 © 2015 Docker Inc



More about the ADD instruction

• ADD is cached. If you recreate the image and no files have changed then a
cache is used.

• If the local source is a zip file or a tarball it'll be unpacked to the
destination.

• Sources that are URLs and zipped will not be unpacked.

• Any files created by the ADD instruction are owned by root with
permissions of 0600.

More on ADD here.

Advanced Dockerfiles

Docker Fundamentals a2622f1 282 © 2015 Docker Inc

https://docs.docker.com/reference/builder/#add


The VOLUME instruction
The VOLUME instruction will create a data volume mount point at the specified path.

VOLUME [ "/opt/webapp/data" ]

• Data volumes bypass the union file system.

In other words, they are not captured by docker commit.

• Data volumes can be shared and reused between containers.

We'll see how this works in a subsequent lesson.

• It is possible to share a volume with a stopped container.

• Data volumes persist until all containers referencing them are destroyed.

Advanced Dockerfiles

Docker Fundamentals a2622f1 283 © 2015 Docker Inc



The WORKDIR instruction
The WORKDIR instruction sets the working directory for subsequent instructions.

It also affects CMD and ENTRYPOINT, since it sets the working directory used when
starting the container.

WORKDIR /opt/webapp

You can specify WORKDIR again to change the working directory for further operations.

Advanced Dockerfiles

Docker Fundamentals a2622f1 284 © 2015 Docker Inc



The ENV instruction
The ENV instruction specifies environment variables that should be set in any container
launched from the image.

ENV WEBAPP_PORT 8080

This will result in an environment variable being created in any containers created from
this image of

WEBAPP_PORT=8080

You can also specify environment variables when you use docker run.

$ docker run -e WEBAPP_PORT=8000 -e WEBAPP_HOST=www.example.com ...

Advanced Dockerfiles

Docker Fundamentals a2622f1 285 © 2015 Docker Inc



The USER instruction
The USER instruction sets the user name or UID to use when running the image.

It can be used multiple times to change back to root or to another user.

Advanced Dockerfiles

Docker Fundamentals a2622f1 286 © 2015 Docker Inc



The CMD instruction
The CMD instruction is a default command run when a container is launched from the
image.

CMD [ "nginx", "-g", "daemon off;" ]

Means we don't need to specify nginx -g "daemon off;" when running the
container.

Instead of:

$ docker run <dockerhubUsername>/web_image nginx -g "daemon off;"

We can just do:

$ docker run <dockerhubUsername>/web_image

Advanced Dockerfiles

Docker Fundamentals a2622f1 287 © 2015 Docker Inc



More about the CMD instruction
Just like RUN, the CMD instruction comes in two forms. The first executes in a shell:

CMD nginx -g "daemon off;"

The second executes directly, without shell processing:

CMD [ "nginx", "-g", "daemon off;" ]

Advanced Dockerfiles

Docker Fundamentals a2622f1 288 © 2015 Docker Inc



Overriding the CMD instruction
The CMD can be overridden when you run a container.

$ docker run -it <dockerhubUsername>/web_image bash

Will run bash instead of nginx -g "daemon off;".

Advanced Dockerfiles

Docker Fundamentals a2622f1 289 © 2015 Docker Inc



The ENTRYPOINT instruction
The ENTRYPOINT instruction is like the CMD instruction, but arguments given on the
command line are appended to the entry point.

Note: you have to use the "exec" syntax ([ "..." ]).

ENTRYPOINT [ "/bin/ls" ]

If we were to run:

$ docker run training/ls -l

Instead of trying to run -l, the container will run /bin/ls -l.

Advanced Dockerfiles

Docker Fundamentals a2622f1 290 © 2015 Docker Inc



Overriding the ENTRYPOINT instruction
The entry point can be overriden as well.

$ docker run -it training/ls
bin   dev  home  lib64  mnt  proc  run   srv  tmp  var
boot  etc  lib   media  opt  root  sbin  sys  usr
$ docker run -it --entrypoint bash training/ls
root@d902fb7b1fc7:/#

Advanced Dockerfiles

Docker Fundamentals a2622f1 291 © 2015 Docker Inc



How CMD and ENTRYPOINT interact
The CMD and ENTRYPOINT instructions work best when used together.

ENTRYPOINT [ "nginx" ]
CMD [ "-g", "daemon off;" ]

The ENTRYPOINT specifies the command to be run and the CMD specifies its options.
On the command line we can then potentially override the options when needed.

$ docker run -d <dockerhubUsername>/web_image -t

This will override the options CMD provided with new flags.

Advanced Dockerfiles

Docker Fundamentals a2622f1 292 © 2015 Docker Inc



The ONBUILD instruction
The ONBUILD instruction is a trigger. It sets instructions that will be executed when
another image is built from the image being build.

This is useful for building images which will be used as a base to build other images.

ONBUILD COPY . /app/src

• You can't chain ONBUILD instructions with ONBUILD.

• ONBUILD can't be used to trigger FROM and MAINTAINER instructions.

Advanced Dockerfiles

Docker Fundamentals a2622f1 293 © 2015 Docker Inc



Building an efficient Dockerfile
• Each line in a Dockerfile creates a new layer.

• Build your Dockerfile to take advantage of Docker's caching system.

• Combine multiple similar commands into one by using && to continue
commands and \ to wrap lines.

• COPY dependency lists (package.json,requirements.txt, etc.) by
themselves to avoid reinstalling unchanged dependencies every time.

Advanced Dockerfiles

Docker Fundamentals a2622f1 294 © 2015 Docker Inc



Example "bad" Dockerfile
The dependencies are reinstalled every time, because the build system does not know if
requirements.txt has been updated.

FROM ubuntu:14.04
MAINTAINER Docker Education Team <education@docker.com>
RUN apt-get update
RUN DEBIAN_FRONTEND=noninteractive apt-get install -y -q \

python-all python-pip
COPY ./webapp /opt/webapp/
WORKDIR /opt/webapp
RUN pip install -qr requirements.txt
EXPOSE 5000
CMD ["python", "app.py"]

Advanced Dockerfiles

Docker Fundamentals a2622f1 295 © 2015 Docker Inc



Fixed Dockerfile
Adding the dependencies as a separate step means that Docker can cache more
efficiently and only install them when requirements.txt changes.

FROM ubuntu:14.04
MAINTAINER Docker Education Team <education@docker.com>
RUN apt-get update
RUN DEBIAN_FRONTEND=noninteractive apt-get install -y -q \

python-all python-pip
COPY ./webapp/requirements.txt /tmp/requirements.txt
RUN pip install -qr /tmp/requirements.txt
COPY ./webapp /opt/webapp/
WORKDIR /opt/webapp
EXPOSE 5000
CMD ["python", "app.py"]

Advanced Dockerfiles

Docker Fundamentals a2622f1 296 © 2015 Docker Inc



Security

Security

Docker Fundamentals a2622f1 297 © 2015 Docker Inc



Lesson 21: Security
Objectives

At the end of this lesson, you will know:

• The security implications of exposing Docker's API

• How to take basic steps to make containers more secure

• Where to find more information on Docker security

Security

Docker Fundamentals a2622f1 298 © 2015 Docker Inc



What can we do with Docker API access?
Someone who has access to the Docker API will have full root privileges on the Docker
host.

If you give root privileges to someone, assume that they can do anything they like on the
host, including:

• Accessing all data.

• Changing all data.

• Creating new user accounts and changing passwords.

• Installing stealth rootkits.

• Shutting down the machine.

Security

Docker Fundamentals a2622f1 299 © 2015 Docker Inc



Accessing the host filesystem
To do that, we will use -v to expose the host filesystem inside a container:

$ docker run -v /:/hostfs ubuntu cat /hostfs/etc/passwd
...This shows the content of /etc/passwd on the host...

If you want to explore freely the host filesystem:

$ docker run -it -v /:/hostfs -w /hostfs ubuntu bash

Security

Docker Fundamentals a2622f1 300 © 2015 Docker Inc



Modifying the host filesystem
Volumes are read-write by default, so let's create a dummy file on the host filesystem:

$ docker run -it -v /:/hostfs ubuntu touch /hostfs/hi-there
$ ls -l /
...You will see the hi-there file, created on the host...

Note: if you are using boot2docker or a remote Docker host, you won't see the hi-
there file. It will be in the boot2docker VM, or on the remote Docker host instead.

Security

Docker Fundamentals a2622f1 301 © 2015 Docker Inc



Privileged containers
If you start a container with --privileged, it will be able to access all devices and
perform all operations.

For instance, it will be able to access the whole kernel memory by reading (and even
writing!) /dev/kcore.

A container could also be started with --net host and --privileged together,
and be able to sniff all the traffic going in and out of the machine.

Security

Docker Fundamentals a2622f1 302 © 2015 Docker Inc



Other harmful operations
We won't explain how to do this (because we don't want you to break your Docker
machines), but with access to the Docker API, you can:

• Add user accounts.

• Change password of existing accounts.

• Add SSH key authentication to existing accounts.

• Insert kernel modules.

• Run malicious processes and insert special kernel code to hide them.

Security

Docker Fundamentals a2622f1 303 © 2015 Docker Inc



What to do?

• Do not expose the Docker API to the general public.

• If you expose the Docker API, secure it with TLS certificates.

• TLS certificates will be presented in the next section.

• Make sure that your users are trained to not give away credentials.

Security

Docker Fundamentals a2622f1 304 © 2015 Docker Inc



Security of containers themselves

• "Containers Do Not Contain!"

• Containers themselves do not have security features.

• Security is ensured by a number of other mechanisms.

• We will now review some of those mechanisms.

Security

Docker Fundamentals a2622f1 305 © 2015 Docker Inc



Do not run processes as root

• By default, Docker runs everything as root.

• This is a security risk.

• Docker might eventually drop root privileges automatically, but until then,
you should specify USER in your Dockerfiles, or use su or sudo.

Security

Docker Fundamentals a2622f1 306 © 2015 Docker Inc



Don't colocate security-sensitive containers

• If a container contains security-sensitive information, put it on its own
Docker host, without other containers.

• Other containers (private development environments, non-sensitive
applications...) can be put together.

Security

Docker Fundamentals a2622f1 307 © 2015 Docker Inc



Run AppArmor or SELinux

• Both of these will provide you with an additional layer of protection if an
attacker is able to gain elevated access.

Security

Docker Fundamentals a2622f1 308 © 2015 Docker Inc



Learn more about containers and security

• Presentation given at LinuxCon 2014 (Chicago)

http://www.slideshare.net/jpetazzo/docker-linux-containers-lxc-and-security

Security

Docker Fundamentals a2622f1 309 © 2015 Docker Inc

http://www.slideshare.net/jpetazzo/docker-linux-containers-lxc-and-security


Section summary
We have learned:

• The security implications of exposing Docker's API

• How to take basic steps to make containers more secure

• Where to find more information on Docker security

Security

Docker Fundamentals a2622f1 310 © 2015 Docker Inc



Dealing with Vulnerabilities

Dealing with Vulnerabilities

Docker Fundamentals a2622f1 311 © 2015 Docker Inc



Lesson 22: Dealing with Vulnerabilities
Objectives

We will discuss how to address security vulnerabilities disclosures:

• Concerning Docker itself.

• Concerning the dependencies pulled into your container images.

Dealing with Vulnerabilities

Docker Fundamentals a2622f1 312 © 2015 Docker Inc



Vulnerabilities
When a vulnerability is discovered, it is common practice for the vendor or community
to issue a security advisory.

The security advisory will typically indicate:

• The affected software.

• The specific scenarios (if relevant) where the vulnerability should be a
concern.

• The specific versions affected by the vulnerability.

• The severity of the vulnerability (e.g. can it lead to malfunction, or prevent
others from using the software or service, or allow unauthorized access or
modification to data).

• How to remediate it (typically by upgrading affected software).

Dealing with Vulnerabilities

Docker Fundamentals a2622f1 313 © 2015 Docker Inc



Vulnerabilities in Docker
The typical method to deal with Docker vulnerabilities is:

• Stop all containers.

• Stop the Docker daemon.

• Upgrade the Docker daemon.

• Start the Docker daemon.

• Start the container.

Dealing with Vulnerabilities

Docker Fundamentals a2622f1 314 © 2015 Docker Inc



Vulnerabilities in images
If a vulnerability is announced concerning a package that you are using in your images,
you should upgrade those images.

Assuming that updated packages are available, you should:

• Force a docker pull of all your base images.

• Re-execute a docker build --no-cache of all your built images.

• Re-start all containers using the updated images.

Dealing with Vulnerabilities

Docker Fundamentals a2622f1 315 © 2015 Docker Inc



Detecting vulnerabilities
You can use traditional auditing systems, but Docker provides new, efficient, non-
intrusive ways to perform security audit and vulnerability reporting.

The use of the --read-only flag lets you perform offline analysis of images to detect
those which have vulnerable software.

Dealing with Vulnerabilities

Docker Fundamentals a2622f1 316 © 2015 Docker Inc



Securing Docker with TLS

Securing Docker with TLS

Docker Fundamentals a2622f1 317 © 2015 Docker Inc



Lesson 23: Securing Docker with TLS
Objectives

At the end of this lesson, you will be able to:

• Understand how Docker uses TLS to secure and authorize remote clients

• Create a TLS Certificate Authority

• Create TLS Keys

• Sign TLS Keys

• Use these keys with Docker

Securing Docker with TLS

Docker Fundamentals a2622f1 318 © 2015 Docker Inc



Why should I care?

• Docker does not have any access controls on its network API unless you
use TLS!

Securing Docker with TLS

Docker Fundamentals a2622f1 319 © 2015 Docker Inc



What is TLS

• TLS is Transport Layer Security.

• The protocol that secures websites with https URLs.

• Uses Public Key Cryptography to encrypt connections.

• Keys are signed with Certificates which are maintained by a trusted party.

• These Certificates indicate that a trusted party believes the server is who
it says it is.

• Each transaction is therefor encrypted and authenticated.

Securing Docker with TLS

Docker Fundamentals a2622f1 320 © 2015 Docker Inc



How Docker Uses TLS

• Docker provides mechanisms to authenticate both the server the client to
each other.

• Provides strong authentication, authorization and encryption for any API
connection over the network.

• Client keys can be distributed to authorized clients

Securing Docker with TLS

Docker Fundamentals a2622f1 321 © 2015 Docker Inc



Environment Preparation

• You need to make sure that OpenSSL version 1.0.1 is installed on your
machine.

• Make a directory for all of the files to reside.

• Make sure that the directory is protected and backed up!

• Treat these files the same as a root password.

Securing Docker with TLS

Docker Fundamentals a2622f1 322 © 2015 Docker Inc



Creating a Certificate Authority
First, initialize the CA serial file and generate CA private and public keys:

$ echo 01 > ca.srl
$ openssl genrsa -des3 -out ca-key.pem 2048
$ openssl req -new -x509 -days 365 -key ca-key.pem -out ca.pem

We will use the ca.pem file to sign all of the other keys later.

Securing Docker with TLS

Docker Fundamentals a2622f1 323 © 2015 Docker Inc



Create and Sign the Server Key
Now that we have a CA, we can create a server key and certificate signing request. Make
sure that CN matches the hostname you run the Docker daemon on:

$ openssl genrsa -des3 -out server-key.pem 2048
$ openssl req -subj '/CN=**<Your Hostname Here>**' -new -key server-key.pem -out
server.csr
$ openssl rsa -in server-key.pem -out server-key.pem

Next we're going to sign the key with our CA:

$ openssl x509 -req -days 365 -in server.csr -CA ca.pem -CAkey ca-key.pem \
-out server-cert.pem

Securing Docker with TLS

Docker Fundamentals a2622f1 324 © 2015 Docker Inc



Create and Sign the Client Key
$ openssl genrsa -des3 -out client-key.pem 2048
$ openssl req -subj '/CN=client' -new -key client-key.pem -out client.csr
$ openssl rsa -in client-key.pem -out client-key.pem

To make the key suitable for client authentication, create a extensions config file:

$ echo extendedKeyUsage = clientAuth > extfile.cnf

Now sign the key:

$ openssl x509 -req -days 365 -in client.csr -CA ca.pem -CAkey ca-key.pem \
-out client-cert.pem -extfile extfile.cnf

Securing Docker with TLS

Docker Fundamentals a2622f1 325 © 2015 Docker Inc



Configuring the Docker Daemon for TLS

• By default, Docker does not listen on the network at all.

• To enable remote connections, use the -H flag.

• The assigned port for Docker over TLS is 2376.

$ sudo docker -d --tlsverify
--tlscacert=ca.pem
--tlscert=server-cert.pem
--tlskey=server-key.pem -H=0.0.0.0:2376

Note: You will need to modify the startup scripts on your server for this to be
permanent! The keys should be placed in a secure system directory, such as /etc/
docker.

Securing Docker with TLS

Docker Fundamentals a2622f1 326 © 2015 Docker Inc



Configuring the Docker Client for TLS
If you want to secure your Docker client connections by default, you can move the key
files to the .docker directory in your home directory. Set the DOCKER_HOST variable
as well.

$ cp ca.pem ~/.docker/ca.pem
$ cp client-cert.pem ~/.docker/cert.pem
$ cp client-key.pem ~/.docker/key.pem
$ export DOCKER_HOST=tcp://:2376

Then you can run docker with the --tlsverify option.

$ docker --tlsverify ps

Securing Docker with TLS

Docker Fundamentals a2622f1 327 © 2015 Docker Inc



Section Summary
We learned how to:

• Create a TLS Certificate Authority

• Create TLS Keys

• Sign TLS Keys

• Use these keys with Docker

Securing Docker with TLS

Docker Fundamentals a2622f1 328 © 2015 Docker Inc



The Docker API

The Docker API

Docker Fundamentals a2622f1 329 © 2015 Docker Inc



Lesson 24: The Docker API
Objectives

At the end of this lesson, you will be able to:

• Work with the Docker API.

• Create and manage containers with the Docker API.

• Manage images with the Docker API.

The Docker API

Docker Fundamentals a2622f1 330 © 2015 Docker Inc



Introduction to the Docker API
So far we've used Docker's command line tools to interact with it. Docker also has a
fully fledged RESTful API you can work with.

The API allows:

• To build images.

• Run containers.

• Manage containers.

The Docker API

Docker Fundamentals a2622f1 331 © 2015 Docker Inc



Docker API details
The Docker API is:

• Broadly RESTful with some commands hijacking the HTTP connection for
STDIN, STDERR, and STDOUT.

• The API binds locally to unix:///var/run/docker.sock but can
also be bound to a network interface.

• Not authenticated by default.

• Securable with certificates.

In the examples below, we will assume that Docker has been setup so that the API
listens on port 2375, because tools like curl can't talk to a local UNIX socket directly.

The Docker API

Docker Fundamentals a2622f1 332 © 2015 Docker Inc



Testing the Docker API
Let's start by using the info endpoint to test the Docker API.

This endpoint returns basic information about our Docker host.

$ curl --silent -X GET http://localhost:2375/info \
| python -mjson.tool

{
"Containers": 68,
"Debug": 0,
"Driver": "aufs",
"DriverStatus": [

[
"Root Dir",
"/var/lib/docker/aufs"

],
[

"Dirs",
"711"

]
],
"ExecutionDriver": "native-0.2",
"IPv4Forwarding": 1,
"Images": 575,
"IndexServerAddress": "https://index.docker.io/v1/",
"InitPath": "/usr/bin/docker",
"InitSha1": "",
"KernelVersion": "3.14.0-1-amd64",
"MemoryLimit": 1,
"NEventsListener": 0,
"NFd": 11,
"NGoroutines": 11,
"OperatingSystem": "<unknown>",
"SwapLimit": 1

}

The Docker API

Docker Fundamentals a2622f1 333 © 2015 Docker Inc



Doing docker run via the API
It is simple to do docker run with the CLI, but it is more complex with the API. It
involves multiple calls.

We will focus on detached containers for now (i.e., running in the background).
Interactive containers involve hijacking the HTTP connection. This is easily handled with
Docker client libraries, but for now, we will use regular tools like curl.

The Docker API

Docker Fundamentals a2622f1 334 © 2015 Docker Inc



Container lifecycle with the API
To run a container, you must:

• Create the container. It is then stopped, but ready to go.

• Start the container.

• Optionally, you can wait for the container to exit.

• You can also retrieve the container output (logs) with the API.

Each of those operations corresponds to a specific API call.

The Docker API

Docker Fundamentals a2622f1 335 © 2015 Docker Inc



"Create" vs. "Start"
The create API call creates the container, and gives us the ID of the newly created
container. The container does not run yet, though.

The start API call tells Docker to transition the container from "stopped" to "running".

Those are two different calls, so you can attach to the container before starting it, to
make sure that you will not miss any output from the container, for instance.

Some parameters (e.g. which image to use, memory limits) must be specified with
create; others (e.g. ports and volumes mappings) must be specified with start.

To see the list of all parameters, check the API reference documentation.

The Docker API

Docker Fundamentals a2622f1 336 © 2015 Docker Inc



Creating a new container via the API
Let's use curl to create a simple container.

$ curl -X POST -H 'Content-Type: application/json' \
http://localhost:2375/containers/create \
-d '{

"Cmd":["echo", "hello world"],
"Image":"busybox"

}'
{"Id":"<yourContainerID>","Warnings":null}

• You can see the container ID returned by the API.

• The Cmd parameter has to be a list.

(If you put echo hello world it will try to execute a binary called
echo hello world.)

• You can add more parameters in the JSON structure.

• The only mandatory parameter is the Image to use.

The Docker API

Docker Fundamentals a2622f1 337 © 2015 Docker Inc



Starting our new container via the API
In the previous step, the API gave you a container ID.

You will have to copy-paste that ID.

$ curl -X POST -H 'Content-Type: application/json' \
http://localhost:2375/containers/<yourContainerID>/start \
-d '{}'

No output will be shown (unless an error happens).

The Docker API

Docker Fundamentals a2622f1 338 © 2015 Docker Inc



Inspecting our launched container
We can also inspect our freshly launched container.

$ curl --silent \
http://localhost:2375/containers/<yourContainerID>/json |
python -mjson.tool

{
"Args": [

"hello world"
],

"Config": {
"AttachStderr": false,
"AttachStdin": false,
"AttachStdout": false,
"Cmd": [

"echo",
"hello world"
],
. . .

}

• It returns the same hash the docker inspect command returns.

The Docker API

Docker Fundamentals a2622f1 339 © 2015 Docker Inc



Waiting for our container to exit and check its status
code

Our test container will run and exit almost instantly.

But for containers running for a longer period of time, we can call the wait endpoint.

The wait endpoint also gives the exit status of the container.

$ curl --silent -X POST \
http://localhost:2375/containers/<yourContainerID>/wait

{"StatusCode":0}

• Note that you have to use a POST method here.

• The StatusCode of 0 means that the process exited normally, without
error.

The Docker API

Docker Fundamentals a2622f1 340 © 2015 Docker Inc



Viewing container output (logs)
Our container is supposed to echo hello world.

Let's verify that.

$ curl --silent \
http://localhost:2375/containers/<yourContainerID>/logs?stdout=1

hello world

• There are other options, to select which streams to see (stdout and/or
stderr), whether or not to show timestamps, and to follow the logs (like
tail -f does).

• Check the API reference documentation to see all available options.

The Docker API

Docker Fundamentals a2622f1 341 © 2015 Docker Inc



Stopping a container
We can also stop a container using the API.

$ curl --silent -X POST \
http://localhost:2375/containers/<yourContainerID>/stop

• Note that you have to use a POST call here.

• If it succeeds it will return a HTTP 204 response code.

The Docker API

Docker Fundamentals a2622f1 342 © 2015 Docker Inc



Working with images
We can also work with Docker images.

$ curl -X GET http://localhost:2375/images/json?all=0
[

{
"Created": 1396291095,
"Id": "cccdc2d2ec497e814793e8bd952ae76d5d552c8bb7ed927db54aa65579508ffd",
"ParentId": "9cd978db300e27386baa9dd791bf6dc818f13e52235b26e95703361ec3c94dc6",
"RepoTags": [

"training/datavol:latest"
],
"Size": 0,
"VirtualSize": 204371253

},
{

"Created": 1396117401,
"Id": "d4faa2107ddab5b22e815759d9a345f1381562ad44d1d95235347d6b006ec713",
"ParentId": "439aa219e271671919a52a8d5f7a8e7c2b2950c639f09ce763ac3a06c0d15c22",
. . .

}
]

• Returns a hash of all images.

The Docker API

Docker Fundamentals a2622f1 343 © 2015 Docker Inc



Searching the Docker Hub for an image
We can also search the Docker Hub for specific images.

$ curl -X GET http://localhost:2375/images/search?term=training
[

{
"description": "",
"is_official": false,
"is_trusted": true,
"name": "training/namer",
"star_count": 0

},
{

"description": "",
"is_official": false,
"is_trusted": true,
"name": "training/postgres",
"star_count": 0

}
]

This returns a list of images and their metadata.

The Docker API

Docker Fundamentals a2622f1 344 © 2015 Docker Inc



Creating an image
We can then add one of these images to our Docker host.

$ curl -i -v -X POST \
http://localhost:2375/images/create?fromImage=training/namer
{"status":"Pulling repository training/namer"}

This will pull down the training/namer image and add it to our Docker host.

The Docker API

Docker Fundamentals a2622f1 345 © 2015 Docker Inc



Section summary
We've learned how to:

• Work with the Docker API.

• Create and manage containers with the Docker API.

• Manage images with the Docker API.

The Docker API

Docker Fundamentals a2622f1 346 © 2015 Docker Inc



Course Conclusion

Course Conclusion

Docker Fundamentals a2622f1 347 © 2015 Docker Inc



Course Summary
During this class, we:

• Installed Docker.

• Launched our first container.

• Learned about images.

• Got an understanding about how to manage connectivity and data in
Docker containers.

• Learned how to integrate Docker into your daily work flow

Course Conclusion

Docker Fundamentals a2622f1 348 © 2015 Docker Inc



Questions & Next Steps
Still Learning:

• Docker homepage - http://www.docker.com/

• Docker Hub - https://hub.docker.com

• Docker blog - http://blog.docker.com/

• Docker documentation - http://docs.docker.com/

• Docker Getting Started Guide - http://www.docker.com/gettingstarted/

• Docker code on GitHub - https://github.com/docker/docker

• Docker mailing list - https://groups.google.com/forum/#!forum/docker-
user

• Docker on IRC: irc.freenode.net and channels #docker and #docker-
dev

• Docker on Twitter - http://twitter.com/docker

• Get Docker help on Stack Overflow - http://stackoverflow.com/
search?q=docker

Course Conclusion

Docker Fundamentals a2622f1 349 © 2015 Docker Inc

http://www.docker.com/
https://hub.docker.com
http://blog.docker.com/
http://docs.docker.com/
http://www.docker.com/gettingstarted/
https://github.com/docker/docker
https://groups.google.com/forum/#!forum/docker-user
https://groups.google.com/forum/#!forum/docker-user
http://twitter.com/docker
http://stackoverflow.com/search?q=docker
http://stackoverflow.com/search?q=docker


Thank You

Course Conclusion

Docker Fundamentals a2622f1 350 © 2015 Docker Inc


	Introduction to Docker
	Introduction to Docker
	Version: a2622f1
	An Open Platform to Build, Ship, and Run Distributed Applications

	Introduction to Docker
	Logistics
	Introduction to Docker
	Part 1
	Introduction to Docker
	Part 2
	Introduction to Docker
	Extra material
	Introduction to Docker
	Table of Contents
	About Docker
	About Docker
	About Docker
	Lesson 1: Docker 30,000ft overview
	Objectives

	About Docker
	The origins of the Docker Project
	About Docker
	First public release
	About Docker
	The Docker Project
	About Docker
	About Docker Inc.
	About Docker
	How does Docker Inc. make money?
	About Docker
	OK... Why the buzz around containers?
	About Docker
	Deployment becomes very complex
	About Docker
	The deployment problem
	About Docker
	The Matrix from Hell
	About Docker
	An inspiration and some ancient history!
	About Docker
	Intermodal shipping containers
	About Docker
	This spawned a Shipping Container Ecosystem!
	About Docker
	A shipping container system for applications
	About Docker
	Eliminate the matrix from Hell
	About Docker
	From lightweight VMs to application containers
	About Docker
	Step 1: containers as lightweight VMs
	About Docker
	Less overhead!
	About Docker
	Step 2: commoditization of containers
	About Docker
	Containers before Docker
	About Docker
	Containers after Docker
	About Docker
	Positive feedback loop
	About Docker
	Step 3: shipping containers efficiently
	About Docker
	Before Docker
	About Docker
	After Docker
	About Docker
	Example
	About Docker
	Step 4: containers in a modern software factory
	About Docker
	Container image as build artifact
	About Docker
	Technical & cultural revolution: separation of concerns
	Your training Virtual Machine
	Your training Virtual Machine
	Your training Virtual Machine
	Lesson 2: Your training Virtual Machine
	Objectives

	Your training Virtual Machine
	Your training Virtual Machine
	Your training Virtual Machine
	Connecting to your Virtual Machine
	Your training Virtual Machine
	Checking your Virtual Machine
	Install Docker
	Install Docker
	Install Docker
	Lesson 3: Installing Docker
	Objectives

	Install Docker
	Installing Docker
	Install Docker
	Installing Docker on Linux
	Install Docker
	Installing Docker on your Linux distribution
	Install Docker
	Installation script from Docker
	Install Docker
	Installing on OS X and Microsoft Windows
	Install Docker
	Running Docker on OS X and Windows
	Install Docker
	Aboout boot2docker
	Install Docker
	Check that Docker is working
	Install Docker
	Su-su-sudo
	Install Docker
	Important PSA about security
	Install Docker
	The docker group
	Add the Docker group
	Add ourselves to the group
	Restart the Docker daemon
	Log out

	Install Docker
	Check that Docker works without sudo
	Install Docker
	Section summary
	Our First Containers
	Our First Containers
	Our First Containers
	Lesson 4: Our First Containers
	Objectives

	Our First Containers
	Docker architecture
	Our First Containers
	Hello World
	Our First Containers
	That was our first container!
	Our First Containers
	A more useful container
	Our First Containers
	Do something in our container
	Our First Containers
	An obvservation
	Our First Containers
	Install a package in our container
	Our First Containers
	Exiting our container
	Our First Containers
	Starting another container
	Background Containers
	Background Containers
	Background Containers
	Lesson 5: Background Containers
	Objectives

	Background Containers
	A non-interactive container
	Background Containers
	Run a container in the background
	Background Containers
	List running containers
	Background Containers
	Two useful flags for docker ps
	Background Containers
	View the logs of a container
	Background Containers
	View only the tail of the logs
	Background Containers
	Follow the logs in real time
	Background Containers
	Stop our container
	Background Containers
	Killing it
	Background Containers
	List stopped containers
	Restarting and Attaching to Containers
	Restarting and Attaching to Containers
	Restarting and Attaching to Containers
	Lesson 6: Restarting and Attaching to Containers
	Objectives

	Restarting and Attaching to Containers
	Background and foreground
	Restarting and Attaching to Containers
	Detaching from a container
	Restarting and Attaching to Containers
	Attaching to a container
	Restarting and Attaching to Containers
	Checking container output
	Restarting and Attaching to Containers
	Restarting a container
	Understanding Docker Images
	Understanding Docker Images
	Understanding Docker Images
	Lesson 7: Understanding Docker Images
	Objectives

	Understanding Docker Images
	What is an image?
	Understanding Docker Images
	Differences between containers and images
	Understanding Docker Images
	Image as stencils
	Understanding Docker Images
	Object-oriented programming
	Understanding Docker Images
	Wait a minute...
	Understanding Docker Images
	A chicken-and-egg problem
	Understanding Docker Images
	Creating the first images
	Understanding Docker Images
	Creating other images
	Understanding Docker Images
	Images namespaces
	Understanding Docker Images
	Root namespace
	Understanding Docker Images
	User namespace
	Understanding Docker Images
	Self-Hosted namespace
	Understanding Docker Images
	Historical detail
	Understanding Docker Images
	How do you store and manage images?
	Understanding Docker Images
	Showing current images
	Understanding Docker Images
	Searching for images
	Understanding Docker Images
	Downloading images
	Understanding Docker Images
	Pulling an image
	Understanding Docker Images
	Image and tags
	Understanding Docker Images
	When to (not) use tags
	Understanding Docker Images
	Section summary
	Building Images Interactively
	Building Images Interactively
	Building Images Interactively
	Lesson 8: Building Images Interactively
	Objectives

	Building Images Interactively
	Building Images Interactively
	Building Images Interactively
	Building from a base
	Building Images Interactively
	Create a new container and make some changes
	Building Images Interactively
	Inspect the changes
	Building Images Interactively
	Docker tracks filesystem changes
	Building Images Interactively
	Commit and run your image
	Building Images Interactively
	Tagging images
	Building Images Interactively
	What's next?
	Building Docker images
	Building Docker images
	Building Docker images
	Lesson 9: Building Images With A Dockerfile
	Objectives

	Building Docker images
	Dockerfile overview
	Building Docker images
	Writing our first Dockerfile
	Building Docker images
	Type this into our Dockerfile...
	Building Docker images
	Build it!
	Building Docker images
	What happens when we build the image?
	Building Docker images
	Sending the build context to Docker
	Building Docker images
	Executing each step
	Building Docker images
	The caching system
	Building Docker images
	Running the image
	Building Docker images
	Using image and viewing history
	CMD and ENTRYPOINT
	CMD and ENTRYPOINT
	CMD and ENTRYPOINT
	Lesson 10: CMD and ENTRYPOINT
	Objectives

	CMD and ENTRYPOINT
	Defining a default command
	CMD and ENTRYPOINT
	Adding CMD to our Dockerfile
	CMD and ENTRYPOINT
	Build and test our image
	CMD and ENTRYPOINT
	Overriding CMD
	CMD and ENTRYPOINT
	Using ENTRYPOINT
	CMD and ENTRYPOINT
	Adding ENTRYPOINT to our Dockerfile
	CMD and ENTRYPOINT
	Build and test our image
	CMD and ENTRYPOINT
	Using CMD and ENTRYPOINT together
	CMD and ENTRYPOINT
	CMD and ENTRYPOINT together
	CMD and ENTRYPOINT
	Build and test our image
	CMD and ENTRYPOINT
	Overriding ENTRYPOINT
	Copying files during the build
	Copying files during the build
	Copying files during the build
	Lesson 11: Copying files during the build
	Objectives

	Copying files during the build
	Build some C code
	Copying files during the build
	The Dockerfile
	Copying files during the build
	Testing our C program
	Copying files during the build
	COPY and the build cache
	Copying files during the build
	Details
	A quick word about the Docker Hub
	A quick word about the Docker Hub
	A quick word about the Docker Hub
	Lesson 12: Uploading our images to the Docker Hub
	Naming and inspecting containers
	Naming and inspecting containers
	Naming and inspecting containers
	Lesson 13: Naming and inspecting containers
	Objectives

	Naming and inspecting containers
	Naming our containers
	Naming and inspecting containers
	Default names
	Naming and inspecting containers
	Specifying a name
	Naming and inspecting containers
	Renaming containers
	Naming and inspecting containers
	Inspecting a container
	Naming and inspecting containers
	Parsing JSON with the Shell
	Naming and inspecting containers
	Using --format
	Container Networking Basics
	Container Networking Basics
	Container Networking Basics
	Lesson 14: Container Networking Basics
	Objectives

	Container Networking Basics
	A simple, static web server
	Container Networking Basics
	Finding our web server port
	Container Networking Basics
	Connecting to our web server (GUI)
	Container Networking Basics
	Connecting to our web server (CLI)
	Container Networking Basics
	Why are we mapping ports?
	Container Networking Basics
	Finding the web server port in a script
	Container Networking Basics
	Manual allocation of port numbers
	Container Networking Basics
	Plumbing containers into your infrastructure
	Container Networking Basics
	Finding the container's IP address
	Container Networking Basics
	Pinging our container
	Container Networking Basics
	The old model (before Engine 1.9)
	Container Networking Basics
	The default bridge
	Container Networking Basics
	The null driver
	Container Networking Basics
	The host driver
	Container Networking Basics
	The container driver
	Container Networking Basics
	The new model (since Engine 1.9.0)
	Container Networking Basics
	What's in a network?
	Container Networking Basics
	Creating a network
	Container Networking Basics
	Placing containers on a network
	Container Networking Basics
	Communication between containers
	Container Networking Basics
	Resolving container addresses
	Container Networking Basics
	Connecting to multiple networks
	Container Networking Basics
	Implementation details
	Container Networking Basics
	Multi-host networking
	Container Networking Basics
	Section summary
	Local Development Workflow with Docker
	Local Development Workflow with Docker
	Local Development Workflow with Docker
	Lesson 15: Local Development Workflow with Docker
	Objectives

	Local Development Workflow with Docker
	Using a Docker container for local development
	Local Development Workflow with Docker
	Our "namer" application
	Local Development Workflow with Docker
	Let's look at the code
	Local Development Workflow with Docker
	Where's my code?
	Local Development Workflow with Docker
	Our first volume
	Local Development Workflow with Docker
	Mounting volumes inside containers
	Local Development Workflow with Docker
	Testing the development container
	Local Development Workflow with Docker
	Viewing our application
	Local Development Workflow with Docker
	Making a change to our application
	Local Development Workflow with Docker
	Refreshing our application
	Local Development Workflow with Docker
	Improving the workflow with Compose
	Local Development Workflow with Docker
	Why Compose?
	Local Development Workflow with Docker
	Workflow explained
	Local Development Workflow with Docker
	Debugging inside the container
	Local Development Workflow with Docker
	docker exec example
	Local Development Workflow with Docker
	Stopping the container
	Local Development Workflow with Docker
	Section summary
	Working with Volumes
	Working with Volumes
	Working with Volumes
	Lesson 16: Working with Volumes
	Objectives

	Working with Volumes
	Working with Volumes
	Working with Volumes
	Volumes are special directories in a container
	Working with Volumes
	Volumes bypass the copy-on-write system
	Working with Volumes
	Volumes can be shared across containers
	Working with Volumes
	Volumes exist independently of containers
	Working with Volumes
	Data containers (before Engine 1.9)
	Working with Volumes
	Using data containers
	Working with Volumes
	Named volumes (since Engine 1.9)
	Working with Volumes
	Using our named volumes
	Working with Volumes
	Managing volumes explicitly
	Working with Volumes
	Sharing a directory between the host and a container
	Working with Volumes
	Migrating data with --volumes-from
	Working with Volumes
	What happens when you remove containers with volumes?
	Working with Volumes
	Checking volumes defined by an image
	Working with Volumes
	Checking volumes used by a container
	Working with Volumes
	Sharing a single file between the host and a container
	Working with Volumes
	Section summary
	Connecting Containers
	Connecting Containers
	Connecting Containers
	Lesson 17: Connecting containers
	Objectives

	Connecting Containers
	Connecting containers
	Connecting Containers
	What we've got planned
	Connecting Containers
	Launch a container from the redis image.
	Connecting Containers
	Trying our Rails app
	Connecting Containers
	How our app connects to Redis
	Connecting Containers
	Launch a container from the nathanleclaire/redisonrails image.
	Connecting Containers
	Launch and link a container
	Connecting Containers
	DNS
	Connecting Containers
	Access our container with the Rails console
	Connecting Containers
	More about our link - Environment variables
	Connecting Containers
	Starting our Rails application
	Connecting Containers
	Starting our Rails application
	Connecting Containers
	Viewing our Rails application
	Connecting Containers
	Tidying up
	Connecting Containers
	Section summary
	Ambassadors
	Ambassadors
	Ambassadors
	Lesson 18: Ambassadors
	Objectives

	Ambassadors
	Ambassadors
	Ambassadors
	Introduction to Ambassadors
	Ambassadors
	Ambassadors
	Interacting with ambassadors
	Ambassadors
	Implementing the ambassador pattern
	Ambassadors
	Section summary
	Compose For Development Stacks
	Compose For Development Stacks
	Compose For Development Stacks
	Lesson 19: Using Docker Compose for Development Stacks
	Objectives

	Compose For Development Stacks
	What is Docker Compose?
	Compose For Development Stacks
	Compose overview
	Compose For Development Stacks
	Compose in action
	Compose For Development Stacks
	Checking if Compose is installed
	Compose For Development Stacks
	Installing Compose
	Compose For Development Stacks
	Launching Our First Stack with Compose
	Compose For Development Stacks
	Launching Our First Stack with Compose
	Compose For Development Stacks
	Stopping the app
	Compose For Development Stacks
	The docker-compose.yml file
	Compose For Development Stacks
	Containers in docker-compose.yml
	Compose For Development Stacks
	Container parameters
	Compose For Development Stacks
	Compose commands
	Compose For Development Stacks
	Check container status
	Compose For Development Stacks
	Cleaning up
	Compose For Development Stacks
	Special handling of volumes
	Advanced Dockerfiles
	Advanced Dockerfiles
	Advanced Dockerfiles
	Lesson 20: Advanced Dockerfiles
	Objectives

	Advanced Dockerfiles
	Dockerfile usage summary
	Advanced Dockerfiles
	The FROM instruction
	Advanced Dockerfiles
	The FROM instruction
	Advanced Dockerfiles
	More about FROM
	Advanced Dockerfiles
	The MAINTAINER instruction
	Advanced Dockerfiles
	The RUN instruction
	Advanced Dockerfiles
	More about the RUN instruction
	Advanced Dockerfiles
	Collapsing layers
	Advanced Dockerfiles
	The EXPOSE instruction
	Advanced Dockerfiles
	The ADD instruction
	Advanced Dockerfiles
	More about the ADD instruction
	Advanced Dockerfiles
	The VOLUME instruction
	Advanced Dockerfiles
	The WORKDIR instruction
	Advanced Dockerfiles
	The ENV instruction
	Advanced Dockerfiles
	The USER instruction
	Advanced Dockerfiles
	The CMD instruction
	Advanced Dockerfiles
	More about the CMD instruction
	Advanced Dockerfiles
	Overriding the CMD instruction
	Advanced Dockerfiles
	The ENTRYPOINT instruction
	Advanced Dockerfiles
	Overriding the ENTRYPOINT instruction
	Advanced Dockerfiles
	How CMD and ENTRYPOINT interact
	Advanced Dockerfiles
	The ONBUILD instruction
	Advanced Dockerfiles
	Building an efficient Dockerfile
	Advanced Dockerfiles
	Example "bad" Dockerfile
	Advanced Dockerfiles
	Fixed Dockerfile
	Security
	Security
	Security
	Lesson 21: Security
	Objectives

	Security
	What can we do with Docker API access?
	Security
	Accessing the host filesystem
	Security
	Modifying the host filesystem
	Security
	Privileged containers
	Security
	Other harmful operations
	Security
	What to do?
	Security
	Security of containers themselves
	Security
	Do not run processes as root
	Security
	Don't colocate security-sensitive containers
	Security
	Run AppArmor or SELinux
	Security
	Learn more about containers and security
	Security
	Section summary
	Dealing with Vulnerabilities
	Dealing with Vulnerabilities
	Dealing with Vulnerabilities
	Lesson 22: Dealing with Vulnerabilities
	Objectives

	Dealing with Vulnerabilities
	Vulnerabilities
	Dealing with Vulnerabilities
	Vulnerabilities in Docker
	Dealing with Vulnerabilities
	Vulnerabilities in images
	Dealing with Vulnerabilities
	Detecting vulnerabilities
	Securing Docker with TLS
	Securing Docker with TLS
	Securing Docker with TLS
	Lesson 23: Securing Docker with TLS
	Objectives

	Securing Docker with TLS
	Why should I care?
	Securing Docker with TLS
	What is TLS
	Securing Docker with TLS
	How Docker Uses TLS
	Securing Docker with TLS
	Environment Preparation
	Securing Docker with TLS
	Creating a Certificate Authority
	Securing Docker with TLS
	Create and Sign the Server Key
	Securing Docker with TLS
	Create and Sign the Client Key
	Securing Docker with TLS
	Configuring the Docker Daemon for TLS
	Securing Docker with TLS
	Configuring the Docker Client for TLS
	Securing Docker with TLS
	Section Summary
	The Docker API
	The Docker API
	The Docker API
	Lesson 24: The Docker API
	Objectives

	The Docker API
	Introduction to the Docker API
	The Docker API
	Docker API details
	The Docker API
	Testing the Docker API
	The Docker API
	Doing docker run via the API
	The Docker API
	Container lifecycle with the API
	The Docker API
	"Create" vs. "Start"
	The Docker API
	Creating a new container via the API
	The Docker API
	Starting our new container via the API
	The Docker API
	Inspecting our launched container
	The Docker API
	Waiting for our container to exit and check its status code
	The Docker API
	Viewing container output (logs)
	The Docker API
	Stopping a container
	The Docker API
	Working with images
	The Docker API
	Searching the Docker Hub for an image
	The Docker API
	Creating an image
	The Docker API
	Section summary
	Course Conclusion
	Course Conclusion
	Course Conclusion
	Course Summary
	Course Conclusion
	Questions & Next Steps
	Course Conclusion
	Thank You

