
Docker Containerization

Agenda

• Overview on Docker

• Working with Containers - In depth

• Docker Volumes

• Networking & Port Forwarding

• Creating your own images

• Pushing Images to Docker Registry

• Configuring Web Application with Docker

• CI/CD with Docker & Bamboo

2

Agenda

• CI/CD with Docker & Bamboo

• Docker Compose

• Docker Machine

• Troubleshooting docker containers

• Docker Swarm

• Overview on Kubernetes

3

What is Docker

Docker is a open-source platform for Building, Shipping

applications using container virtualization technology.

and Running

The docker platform consists of multiple products/tools:

Docker

Docker

Docker

Docker

Docker

Engine

Hub

Machine

Swarm

Compose

•

•

•

•

•

4

Why would you use docker

• Conventional Deployment takes longer time

• Infrastructure development takes time

• Application portability is a challenge (it works on my machine)

• Manual deployment scripts are difficult to manage and version

control.

5

History

Slow deployment times•

Huge costs•

Wasted resources•

Difficult to scale•

Vendor lock in•

6

Hypervisor based Virtualization

One physical server can contain multiple applications•

• Each application runs in a virtual machine

7

Benefits of VM

Better resource pooling•

One physical machine divided into number of VMs•

Easier to scale•

VM’s in the cloud•

Rapid elasticity•

Pay as you go model•

8

Limitations of VM

Each

•

VM still requires

CPU Allocation

Storage

RAM

An entireguest

•

•

•

operation system•

The more VMs you run, the more resources

Guest OS means wasted resources

Application portability not guaranteed

you need•

•

•

9

Introduction to Containers

Container based virtualization uses the kernel on the host’s operating

system to run multiple guest instances

Each guest instance is called a container•

Each container has its own•

Root file system

Processes

Memory

Devices

Network ports

•

•

•

•

•

10

Introduction to Containers

11

12

VM Vs Containers

Underlying Technology

Namespace to provide isolation•

Control groups to share/limit hardware resources•

Union file system makes it light and fast•

libcontainer defines container format•

13

Advantages of Docker

Faster Deployments•

Isolation•

Portability - ‘it works on my machine’•

Limit resource usage•

Sharing•

14

Install Docker

Follow the instructions at https://docs.docker.com/installation to install the latest Docker

maintained Docker package on your preferred operating system

The installation provides

• Docker Engine

• Docker CLI client

• Docker Compose

• Docker Machine.

15

https://docs.docker.com/installation
https://docs.docker.com/engine/userguide/intro/
https://docs.docker.com/compose/overview/
https://docs.docker.com/machine/overview/

Install Docker on CentOS

•

•

Create a fresh VM with CentOS7

Initial Setup

•

•

ssh root@IPAddress

adduser demo - To add a new user

•

•

passwd demo - To create password for demo user

gpasswd -a demo wheel - Add user to wheel group to allow sudo privileges

• On local (host) machine

• create ssh key pari - ssh-keygen

• ssh-copy-id demo@IP address - To copy public key to remote centos machine

• check with ssh demo@IPaddress

16

mailto:root@IPAddress
mailto:demo@IP
mailto:demo@IPaddress

Install Docker on CentOS

Install Docker•

•

•

On CentOS machine - sudo demo

sudo yum check-update

•

•

curl -fsSL https://get.docker.com/ | sh

After installation has completed, start docker daemon: sudo systemctl start docker

•

•

Verify that its running: sudo systemctl status docker

To make sure it starts on every reboot: sudo systemctl enable docker

• To execute commands without sudo, add demo user to docker group:

aG docker demo

sudo usermod -

17

https://get.docker.com/

Install Docker-Machine on CentOS

curl -L https://github.com/docker/machine/releases/download/v0.12.2/docker-machine-`uname -s`-`uname -m` >/

tmp/docker-machine &&

chmod +x /tmp/docker-machine &&

sudo cp /tmp/docker-machine /usr/local/bin/docker-machine

18

Install Docker-Compose on CentOS

1. sudo yum install epel-release

2. sudo yum install -y python-pip

3. sudo pip install docker-compose

4. sudo yum upgrade python*

19

Commands to Verify the Installation

• docker version

• docker-machine version

• docker-compose version

20

Check the Installation

Run the below commands to verify the installation

Client:
Version:
API version:
Go version:
Git commit:

17.03.1-ce-rc1
1.27
go1.7.5
3476dbf

• docker version

Built:
OS/Arch:

Fri Mar 17 00:27:41 2017
darwin/amd64

Server:
Version:
API version:
1.12)
Go version:
Git commit:

• docker-machine version 17.03.1-ce-rc1
1.27 (minimum version

• docker-machine version 0.10.0, build 76ed2a6

go1.7.5
3476dbf

Built:
OS/Arch:

Wed Mar 15 20:28:18 2017
linux/amd64• docker-compose version

Experimental: true•

•

•

•

docker-compose version 1.11.2, build dfed245

docker-py version: 2.1.0

CPython version: 2.7.12

OpenSSL version: OpenSSL 1.0.2j 26 Sep 2016

21

Docker Components

Docker Engine

Images

Containers

Registry

Repository

Docker Hub

Docker Orchestration

•

•

•

•

•

•

tools•

22

Docker Engine

Docker Engine is a client-server application with these major components:

A server which is a type of long-running program called a daemon•

process.

A REST API which specifies interfaces that programs can use to talk to•

the daemon and instruct it what to do.

A command line interface (CLI) client.•

23

Docker Engine

24

Client and Server (Daemon)

Client / Server architecture•

Client takes user inputs and send them to the daemon•

Daemon builds, runs and distributes containers•

Client and daemon can run on the same host or on different•

hosts

CLI client and GUI (Kitematic)•

25

Docker Architecture

26

Container & Images

Images

Read only template used to create•

containers

Built by you or other docker users•

• Stored in the Docker Hub or

registry

your local

Containers

Runnable instance of a docker

Isolated application platform

image•

•

• Contains everything needed to run your

application

Based on one or more images•

27

Image Layers

Images are comprised of multiple

layers

Every image contains a base layer

A layer is also just another image

•

•

•

Docker uses a copy on write system•

Layers are read-only•

28

Docker Registry

• A docker registry is a library of

orimages. A registry can be public

private,

server

Docker

server.

Docker

and can be on the same

as the Docker daemon or

client, or on a totally separate

• Hub is a public registry that

contains a large number

use.

of images

available for your

29

Docker Orchestration

Three tools for orchestrating distributed applications with Docker

Docker Machine•

Tool that provisions

on them

Docker hosts and installs the Docker Engine•

Docker

•

Swarm

Tool that clusters many Enginesand schedules containers

Compose

Tools to create and manage multi-container applications

•

Docker

•

•

30

Hands-On

1. Create your first container.

2. Deploying web server in a container

3. Deploying customized java application in a container

4. Interactive mode and opening bash terminal

5. Detached Mode

6. Creating containers with Volumes

7. Exposing Containers with Port Redirect

8. Build your own images - Dockerfile

9. Store images on docker hub & private registry

31

Create your first container

Run the ‘hello-world’ container to test the installation•

sudo docker run hello-world•

32

Exercise

Run command: docker run hello-world•

check the output•

docker images•

docker ps•

docker ps -a•

33

Interactive Mode & Getting Terminal Access

Use docker run command•

Syntax: docker run [options] [images] [command] [args]•

Image is specified with repository:tag•

docker run centos:7

34

Interactive Mode & Getting Terminal Access

Use -i and -t flags with docker run•

The -i flag tells docker to connect to STDIN on the container•

The -t flag specifies to get a pseudo-terminal•

Note: You need to run a terminal process as your command (e.g. /bin/bash)•

docker run -i -t centos /bin/bash

35

What happens when you run the Container?

When you run this command, Docker Engine does the following:

Pulls the centos image with tag 7•

Creates a new container: Docker uses the image to create a container.•

Allocates a filesystem and mounts a read-write layer: The container is created in the file•

system and a read-write layer is added to the image.

Allocates a network / bridge interface: Creates a network interface that allows the Docker•

container to talk to the local host.

Sets up an IP address: Finds and attaches an available IP address from a pool.•

Opens up a Bash terminal•

36

Exercise

Run command: docker run centos:7•

docker images•

docker ps•

docker ps -a•

Run in Interactive mode: docker run -it cents:7 /bin/bash•

You will be placed inside the container.•

Open another terminal and run following•

docker ps - You will see a running container•

37

Start and Stop Container

docker run -it centos:7

sudo yum update

yum install git

check git version - You will see

exit container

Again: docker run -it centos:7

•

•

•

git installed•

•

•

You will not see GIT installed, because a new

docker ps -a - And check the container ID

docker start <containerID>

docker exec -it <containerID> /bin/bash

docker stop <containerID>

container has been pinned up•

•

•

•

•

38

Inside Docker

docker inspect <containerID>•

docker logs

docker logs

<containerID>

—follow

•

•

39

Exercise

docker run -it centos:7•

sudo yum update•

yum install git•

check git version - You will see git installed•

exit container•

Again: docker run -it centos:7•

You will not see GIT installed, because a new container has been spinned up•

docker ps -a - And check the container ID•

docker start <containerID>•

docker exec -it <containerID> /bin/bash

docker stop <containerID>

•

•

40

Starting a Web Server in a Container

docker run nginx•

41

Running in Detached Mode

Also known as running in background or as a daemon•

Use -d flag•

To observer output use docker logs [container ID]•

docker logs -f [containerID]•

docker run -d nginx

42

Container Networking

Typically, a Docker host comprises multiple Docker containers and hence the•

networking has become a crucial component for realizing composite containerized

applications. Docker containers also need to interact and collaborate with

as remote ones to come out with distributed applications. The

bridge network is the

local as well

default network interface that Docker Engine assigns to a

the docker

•

the --netcontainer if the network

run subcommand.

is not configured using option of

docker network ls

docker network inspect

43

Networking - Exposing Containers with Port Redirect

-P flag to map container ports to host ports, and assigns port•

automatically

-p - To assign specific port, use -p•

docker run -P nginx

docker run-p <myport>:<containerport> nginx

44

Exec Command

Used to run a command in already existing container•

docker exec -i -t <contianerID> /bin/bash•

45

Exercise

docker run nginx•

docker run -d nginx•

docker run -d -P nginx•

docker run -d -p 8081:80 nginx•

docker run -d -p 8080:8080 tomcat:7•

Now open the browser on your machine and type localhost:8080. It should display nginx•

page

46

Docker Volumes

• Docker manages data within the docker container using Docker Volumes.

• For e.g. let’s say that you are running an application that is generating data and it creates files

or writes to a database and so on. Now, even if the container is removed and in the future you

launch another container, you would like that data to still be there

• Until now, all the files that we created in an image or a container are part and parcel of the

Union filesystem. However, the data volume is part of the Docker host filesystem, and it

simply gets mounted inside the container.

47

Docker Volumes

48

Docker Volumes

• It is initialized when the container is created. By default, it is not deleted when the

container is stopped.

• Data volumes are designed to persist data, independent of the container’s lifecycle.

Docker therefore never automatically deletes volumes when you remove a container,

nor will it “garbage collect” volumes that are no longer referenced by a container.

• Data volumes can be shared across containers too, and can be mounted in read-only

mode also.

49

Docker Volumes

• docker run -it -v data:/myvol tomcat:7

• docker run -d -v ~/practice/shared:/myvol tomcat:7

• docker inspect - Checkout mounts

• docker run -it —name master -v backup:/backup -v logs:/logs ubuntu bash

• exec in this container, and create test files in logs and backup

docker run -it name slave1 —volumes-from masterubuntu bash docker

inspect <volumename>

•

•

50

Docker Volumes

docker run -it -v /home/demo/myvol:/myvol —centos1 cents

docker run -it -v /myvol2 —centos2 busybox (Volume Container)

(cd /var/lib/docker/<containerID>/_data
docker run -it -v —volumes-from centos2 —name centos3 centos

51

Exercise

Volumes

docker run -it -v data:/myvol tomcat:7

docker run -d -v ~/practice/shared:/myvol tomcat:7

docker volume ls

Volumes-from

• docker run -it —name master -v backup:/backup -v logs:/logs ubuntu bash

• exec in this container, and create test files in logs and backup

docker run -it name slave1 —volumes-from masterubuntu bash docker

inspect <volumename>

•

•

52

Create Your Own Image

Images can be created using two methods

• Docker Commit:

docker commit command saves changes in a container as a new image•

docker commit [ContainerID] [repository:tag]•

• Dockerfile

53

Create Your Own Image

• Docker Commit:

• docker run -it centos:7 /bin/bash

•

•

•

yum

yum

yum

update

install git

install curl

•

•

•

•

•

•

exit container

docker commit <containerID>

docker images

Run the image, and verify if git

exit

<username><yourreponame>:<tag>

is installed

docker push <username><yourreponame>:<tag>

54

Exercise

• Docker Commit:

• docker run -it centos:7 /bin/bash

•

•

•

yum

yum

yum

update

install git

install curl

•

•

•

•

exit container

docker commit <containerID>

docker images

Run the image, and verify if git

<repository:tag>

is installed

55

Dockerfile

• A Dockerfile is a text document that contains all the commands a user could call

the command line to assemble an image.

on

• Using “docker build” users can create an automated

command-line instructions in succession.

build that executes several

• The docker build command builds an image from a Dockerfile and a context.

56

https://docs.docker.com/engine/reference/commandline/build/

Dockerfile

FROM

•

•

•

The FROM instruction sets the Base image for subsequent instructions

A valid dockerfile must have a FROM instruction

FROM can occur multiple times in the dockerfile

E.x. FROM java:7 or FROM cantos:7

CMD

•

•

•

CMD defines a default command to execute when a container is created

CMD performs no action during the build image

Shell and EXEC form

Can only be specifedonce in a Dockerfile

Can be overriddenat run time•

FROM ubuntu

CMD echo "This is a test." | wc -

57

Dockerfile

RUN

• Executes a command in a new layer on top of the current image and commit the results

COPY

• The COPY instructioncopies new files or directories from <src>and adds them to the filesystem of the container

at the path <dest>

COPY is preferred over ADD•

58

Dockerfile

ENTRYPOINT - This helps us configure the container as an executable. Similar to CMD,

there can be at max one instruction for ENTRYPOINT; if more than one is specified, then only the

last one will be honored.

•

MAINTAINER - This sets the author for the generated image,MAINTAINER <name>•

• ADD <src> <dst> - This copies files from the source to the destination:

RUN, CMD,• WO R K D I
R

< p a t h > - Th i s s e t s t h e w o r k i n g d i rec t o r y f o r t h e

and ENTRYPOINTinstructions that follow it

59

Dockerfile

• EXPOSE -

runtime

This exposes the network ports on the container on which it will listen at

• ENV - This will set the environment variable <key> to <value>. It will be passed all the

future instructionsand will persist when a container is run from the resulting image

• VOLUME [“/data”] OR /data - This instruction will create a mount point

name and flag it as mounting the external volume

with the given

• USER <username>/<UID> - This sets the username

instructions

for any of the following run

60

Dockerfile Examples

Example2

• FROM centos:7

•RUN yum install -y git

Example1

FROM busybox:latest

CMD echo Hello World!!

•

•

VOLUME /myvol

CMD [“git”, “—version”]

Example3

•

•

•

•

FROM java:7

COPY First.java .

RUN javac First.java

CMD ["java", "First”]

61

Exercise

Example1

•

•

•

•

FROM ubuntu:14.04

RUN apt-get update

RUN apt-get -y install git

CMD [“git”, “—version”]

Example2

•

•

•

•

FROM java:7

COPY First.java .

RUN javac First.java

CMD ["java", "First”]

62

Pushing image to DockerHUB

• Push our images to docker hub

hub.docker.com

Create a repository

Run command: ‘docker push repo:tag’.

Repo name must be same as name of repo created on docker hub

63

http://hub.docker.com/

Docker Private Repository

• docker run -d -p 5000:5000 --restart=always --name registry registry:2

• docker pull centos:7 && docker tag centos:7 localhost:5000/centos:7

• Change the docker push https connection to http

• Edit the file “/usr/lib/systemd/system/docker.service” and change the parameter

• ExecStart=/usr/bin/dockerd … to ExecStart=/usr/bin/dockerd –insecure-registry docker-repo.example.com:5000

• systemctl daemon-reload

• systemctl restart docker

• docker push localhost:5000/centos:7

• docker images - To list down the images you uploaded to private registry

• docker pull localhost:5000/centos:7

64

http://docker-repo.example.com:5000

Exercise

Repeat steps of the previous slide

65

Automated Builds with Docker

CI & CD Automation using Docker can be achieved in Two ways

1. Through Dockerhub Automated Builds

2. Through Jenkins/Bamboo CI server

66

Automation through dockerHub

Steps

1.

2.

Create an application

Create Dockerfile for this application

build, test and package as required.

to be built. Dockerfile will compile,

3. Create an automated build on Dockerhub (Assuming account already

created)

Push the code on GITHUB.

This will run the build on dockerhub automatically and create an image

This image can be pulled to QA or any other server.

4.

5.

6.

67

Docker Orchestration

Three tools for orchestrating distributed applications with Docker

Docker Compose•

Tools to create and manage multi-container applications•

Docker Machine•

Tool that provisions

on them

Docker hosts and installs the Docker Engine•

Docker Swarm•

Tool that clusters many Engines and schedules containers•

68

Microservices Architecture Vs Monolithic Architecture

Microservices is an architectural style that structures

implement

an application as a

collection of loosely coupled services, which business capabilities.

69

Docker Compose

• Docker Compose is a tool for defining and running multi-container Docker applications.

• With Compose, you use a Compose file to configure your application's services

• Then, using a single command, you create and start all the services from your configuration.

70

Docker Compose

Using Compose is basically a three-step process.

1. Define your app's environment with a Dockerfile so it can be reproduced anywhere.

2. Define the services that make up your app in docker-compose.yml so they can be run

together in an isolated environment.

3. Lastly, run docker-compose up and Compose will start and run your entire app.

71

docker-compose.yml

72

HandsOn - Sample Python Example

•

•

•

•

•

create

create

create

a new directory - compose(anyname)

new file docker-compose.yml

a directory myvol and file1 inside it

vi docker-compose.yml

(write the steps as mentioned)

• docker-compose up

73

HandsOn - Sample Python Example

version: '2'
services:

web:
build: .
ports:
- "5000:5000"

volumes:
- .:/code

redis:
image: "redis:alpine"

74

HandsOn - Sample Python Example

version: "3"

services:

web:

image: tomcat:7

ports:

- "8080:8080"

volumes:

- ./myvol:/myvol

75

Troubleshooting - Debug Commands

• Docker details:

• docker info

• docker version

• Service and Container Debugging

•

•

•

•

docker logs <containername/id>

docker inspect <containername/id>

docker service logs <servicename/id>

docker service inspect <servicename/id>

• Network debugging

• docker networkinspect <networkname/id>

Basic Swarm Debugging

• dockernode ls

•

76

Docker Daemon Logs

• Ubuntu — /var/log/upstart/docker.log

• Boot2Docker — /var/log/docker.log

• Debian GNU/Linux — /var/log/daemon.log

• CentOS — /var/log/messages | grep docker

• Fedora — journalctl -u docker.service

• Red Hat Enterprise Linux Server —/var/log/messages | grep docker

77

Troubleshooting Containers

• Troubleshooting Basics

• Command Issues

• Volumes

• Networking

• TLS

• Advanced Troubleshooting techniques

78

Troubleshooting Basics

• Submitting diagnostics, feedback, and GitHub issues

• Checking the Logs

• Make sure certificates are set up correctly

79

Submitting Diagnostics, feedback and GITHUB issues

• Diagnose and Feedback on Windows

• If any issue is encountered, follow the documentation on Docker for

Windows issues on GitHub, or the Docker for Windows forum. If the solution

is not found, than you can send the diagnosis report to docker. This can be

done through Diagnose and Feedback section.You can also create issues

on GITHUB for docker team.

Diagnoseand Feedback on Mac•

•

•

Diagnose and upload - This will upload logs to docker team

Diagnose only - This will display the logs, which you can copy while

creating issue on github

To create issue on mac: https://github.com/docker/for-mac/issues, and

for windows: https://github.com/docker/for-win/issues

•

80

https://github.com/docker/for-win/issues
https://github.com/docker/for-win/issues
https://forums.docker.com/c/docker-for-windows
https://github.com/docker/docker.github.io/blob/master/docker-for-windows/index.md#diagnose-and-feedback
https://github.com/docker/for-mac/issues
https://github.com/docker/for-mac/issues

Checking Logs

• The docker logs command shows information logged by a running container.

The docker service logs command shows information logged by all

containers participating in a service. The information that is logged and

format of the log depends almost entirely on the container’s endpoint

command.

the

•

•

In Linux: /var/lib/docker/containers/……

In Windows; Use the systray menu to view logs:

• To view Docker for Windows latest log, click on the Diagnose & Feedback

menu entry in the systray and then on the Log file link. You see the full

history of logs in your AppData\Local folder.

can

81

Troubleshooting Volume Errors

• Error: Unable to remove filesystem

• Permissions errors on data directories for shared volumes

• Volume mounting requires shared drives for Linux containers

• Verify domain user has permissions for shared drives (volumes)

82

Error: Unable to remove file system

• Some container-based utilities, such as Google cAdvisor,mount Docker system directories, such as /var/lib/

docker/, into a container. For instance, the documentation for cadvisor instructs you to run the cadvisor container.

• When you bind-mount /var/lib/docker/, this effectively mounts all resources of all other runningcontainersas

filesystems within the container which mounts/var/lib/docker/. When you attempt to remove any of these

containers, the removalattempt may fail with an error like the following:

Error: Unable to remove filesystem for

74bef250361c7817bee19349c93139621b272bc8f654ae112dd4eb9652af9515: remove /var/lib/docker/

containers/74bef250361c7817bee19349c93139621b272bc8f654ae112dd4eb9652af9515/shm: Device or

resource busy

• To work around this problem, stop the container which bind-mounts/var/lib/docker and try again to remove the

other container.

83

https://github.com/google/cadvisor

Permission Errors on data directories for shared volumes

• Docker for Windows sets permissions on shared volumes to a default value

of 0755 (read, write, executepermissions for user, read and execute for group).

If you are working with applications that require permissions different than this

default, you will likely get errors similar to the following.

• Data directory (/var/www/html/data) is readable by other users. Please change

the permissions to 0755 so that the directory cannot be listed by other users.

84

https://github.com/docker/docker.github.io/blob/master/docker-for-windows/index.md#shared-drives
http://permissions-calculator.org/decode/0755/

Volume Mounting requires shared drives for Linux Conatiners

If you are using mounted volumes and get runtime errors indicating an

application file is not found, a volume mount is denied, or a service cannot start

(e.g., with Docker Compose), you might need to enable shared drives.Volume

mounting requires shared drives for Linux containers (not for Windows

containers). Go to -->Settings --> Shared Drives and share the drive that

contains the Dockerfile and volume.

85

https://github.com/docker/docker.github.io/blob/master/compose/gettingstarted.md
https://github.com/docker/docker.github.io/blob/master/docker-for-windows/index.md#shared-drives

Verify Domain User has permission for shared drives (volumes)

Permissions to access shared drives are tied to the username and password you

use to set up shared drives. If you run docker commands and tasks under a

different username than the one used to set up shared drives, your containers

will not have permissions to access the mounted volumes. The volumes will

show as empty.

The solution to

shared drives.

this is to switch to the domain user account and reset credentials on

86

https://github.com/docker/docker.github.io/blob/master/docker-for-windows/index.md#shared-drives

Docker Networking

Default Docker Bridge

User defined bridges

Overlay network

87

Troubleshooting - Using Sysdig to Debug

• Sysdig provides application monitoring for containers

From a top level, what sysdig brings to our containermanagement is this:

• Ability to access and review processes (inclusive of internal and external PIDs) in each container

• Ability to drill-down into specific containers

• Ability to easily filter sets of containers for process review and analysis

Sysdig providesdata on CPU usage, I/O, logs, networking, performance, security, and system state.

88

Docker Orchestration

Docker Machine•

Tool that provisions

on them

Docker hosts and installs the Docker Engine•

Docker Swarm•

Tool that clusters many Engines and schedules containers•

Kubernetes•

Docker cluster management tool by Google•

89

Docker Machine

Docker Machine is a tool that lets you create a virtual host and install

Docker Engine on virtual hosts, and manage the hosts with docker-

machine commands.

You can use Machine to create Docker hosts on your local Mac or Windows

box, on your company network, in your data center, or on cloud providers

like AWS or Digital Ocean.

90

Docker Machine

• docker-machine create —driver virtualbox dockerhost1

• docker-machine create —driver digitalocean —digitalocean-access-token <your access token>

—digitalocean-size 2gb testhost2

• docker-machine create —driver amazonec2 —amazonec2-access-keyAKI***** —amazonec2-

secret-key 8T9******aws-sandbox

• docker-machine create -d generic --generic-ip-address {ip-address} {docker-vm-name}

91

Docker Machine

• docker-machine create —driver virtualbox dockerhost1

Env Setup

docker-machine env machinename

docker-machine env -u

eval $(docker-machine env machinename) - This configures our docker CLI utility to

use this particular machine

• docker-machine ls

•

•

docker-machine

docker-machine

stop <name>

start <name>

• docker-machine ip <name>

92

Docker Machine

• docker-machine ls

• docker-machine stop <name>

• docker-machine start <name>

• docker-machine ip <name>

93

Clustering & Load Balancing with Docker Swarm

• Docker Swarm is a tool that clusters Docker hosts and schedules

containers

Turns a pool of host machines into a single virtual host

Ships with simple scheduling backend

Supports many discovery backends like Hosted discovery, etcd,

consul, Zookeeper, Static files

94

Swarm Mode

• Natively managing a cluster of Docker Engines called the Swarm

• Docker CLI to create swarm, deploy apps and manage swarm

• No single point of failure

• Declarative state mode

• Self organizing and self healing

• Service discovery, load balancing, scaling

• Rolling updates

95

Clustering & Load Balancing with Docker Swarm

1. Create nodes and setup docker on all machines willing to be part of

network

2. Create Swarm cluster

3. Join Nodes to the swarm

4. Deploy Service to run on the nodes

96

Create Cluster

1. Create 1 manager and 3 worker nodes

•

•

•

docker-machine

docker-machine

docker-machine

create —driver virtualbox

ip manager1 ls

manager1

2. SSH into manage VM

• docker-machinessh manager1

4. Create docker cluster

•

•

•

docker swarm init —advertise-addr

docker node ls

docker node inspect <hostname>

MANAGER_IP

—pretty

97

Deploy Service

• Join worker node to cluster

• Get the token: docker swarm join-token worker

• SSH into each worker machine

• RUN the token command on each worker machine

• Deploy Service:

• docker

nginx

• docker

• docker

service create --replicas 5 -p 80:80 --name myservice

service

service

ls

ps myservice 98

Command Summary

• docker-machine ls (docker-machine regenerate-certs

• docker-machine ssh manager1

• docker swarm init —advertise-addr <managerIP>

• docker swarm join-token worker

<machinename>

• docker-machine ssh worker1 (and run the token command)

• docker

1.12

• docker

• docker

service create —replicas 5 —name myservice1 -p 8080:80 nginx:

service

service

ls

ps <servicename>

99

Command Summary

• docker

• docker

• docker

• docker

• docker

• docker

• docker

service scale myservice1=10

node inspect self

service update —image <imagename>:<tag> myservice1 node

update —availability drain <nodename>

node update —availability active

swarm leave —force

swarm rm <servicename>

<nodename>

100

Scale & Manage Service

• Scale a service: docker service scale nginx=10

• Inspecting Nodes: docker node inspect self, docker node inspect worker1, docker

node inspect — pretty worker1

• Remove a service: docker service rm nginx

•Apply rolling updates: docker service update --image <imagename>:<version>

web

Manage Cluster Nodes

• Managing nodes

• docker node update --availability drain <NODE>

• docker node update --availability active <NODE>

• docker node inspect master --format "{{ .ManagerStatus.Reachability }}
”

• docker node inspect manager1 --format "{
{

.Status.State }}
”

• Command to leave the cluster

• docker swarm leave —force

102

Deploying Services using Compose YAML file

docker stack deploy --compose-file=docker-compose.yml myservice

docker service scale myservice_db=2

docker stack rm <stack-name>

103

Kubernetes

• Kubernetes is a platform for hosting Docker Containers in a clustered environment

with multiple Docker hosts

Provides container grouping, load balancing, auto-healing, scaling features•

• Project is started by Google

• Contributors == Google, CodeOS, Redhat, Mesosphere, Microsoft, HP, IBM,

VMWare, Pivotal, Saltstack etc

104

Key Concepts of Kubernetes

•

•

•

•

•

•

•

•

•

Master

Node

Pod - A group of Containers

Kubelet - Container Agent

Services

Deployments

Replica Sets

Labels - Labels

Selectors

for identifying pods

105

Kubelet

Kubelet, a process responsible for communication between the Kubernetes Master and

the Nodes; it manages the Pods and the containers running on a machine.

The kubelet is the primary “node agent” that runs on each node. The kubelet works in

terms of a PodSpec. A PodSpec is a YAML or JSON object that describes a pod. The

kubelet takes a set of PodSpecs that are provided through various mechanisms (primarily

through the apiserver) and ensures that the containers described in those PodSpecs are

running and healthy. The kubelet doesn’t manage containers which were not created by

Kubernetes.

106

Nodes

• A Pod always runs on a Node. A Node is a worker machine in Kubernetes and may be

either a virtual or a physical machine, depending on the cluster.

• Each Node is managed by the Master.

• A Node can have multiple pods, and the Kubernetes master automatically handles

scheduling the pods across the Nodes in the cluster. The Master's automatic scheduling

takes into account the available resources on each Node.

• Node will run docker

107

Nodes

108

Pods

• A Pod is a Kubernetes abstraction that represents a group of one or more application

containers and some shared resources for those containers.Those resources include:

Shared storage, as Volumes

Networking, as a unique cluster IP address

Information about how to run each container, such as the container image version

or specific ports to use

109

Kubernetes Cluster

•

•

•

Minikube - For testing & Learning purpose

Custom Cluster from Scratch

Hosted Solutions

•

•

•

Google Container Engine

Azure Container Service

IBM Bluemix Container Service

• Turn-key cloud Solutions

•

•

•

•

AWS Ec2

Asure

CenturyLink Cloud

IBM Bluemix

110

Introduction to Minikube & Kubectl

• Minikube is a lightweight Kubernetes implementation that creates a VM on your

local machine and configuresa simple cluster containing only one node. Minikubeis available

for Linux, Mac OS and Windows systems.

• The Minikube CLI provides basic bootstrapping operations

cluster, including start, stop, status, and delete.

for working with your

• Kubectl is a command line interface to interact with kubenetes.

• kubectl version - To check if kubectl is installed and running. The client version is

the kubectl version; the server version is the Kubernetes version installed on the

master.
111

HandsOn - Create a Kubernetes Cluster

• minikube version

• minikube start - This command will create a vm on Virtual Box and setup a kubernetes

cluster

• kubectl config use-context minikube - This will set the context of your machine to

minikube.

• kubectl cluster-info - This command give detail information about the cluster

• kubectl get nodes - This command shows all nodes that can be used to host our

applications.

112

Create a Deployment

• kubectl run hello-nginx —labels="run=load-balancer" —image=nginx: This creates a

deploymentand we can investigate into the Pod that gets created, which will run the container:

• kubectl get deployments hello-nginx

• kubectl get replicasets

• kubectl get pods OR kubectl get pods --selector="run=load-balancer"

• kubectl describe deployments hello-nginx

• minikube dashboard —url=true

113

Scaling Up

• kubectl scale --replicas=3 deployment/<nameofdeployment>

• kubectl get deployment - To see the status

114

Rolling Out Changes

• kubectl set image deployment/<deploymentname> nginx=nginx:1.9.1

• kubectl rollout status deployment/<deploymentname>

115

Exercise

• Create a deployment with nginx of 5 replicas

• Scale up to 10 replicas

116

Deployment

• Deployment: A Deployment provides declarative updates for Pods and ReplicaSets (the

next-generation ReplicationController). You only need to describe the desired state in a

Deployment object, and the Deployment controller will change the actual state to the

desired state at a controlled rate for you. You can define Deployments to create new

resources, or replace existing ones by new ones.

117

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

Replica Sets

• ReplicaSet is the next-generation Replication Controller. ReplicaSet ensures that a

specified number of pod “replicas” are running at any given time.

• However, a Deployment is a higher-level concept that manages ReplicaSets and

provides declarative updates to pods along with a lot of other useful features.

• Therefore, it is recommended to use Deployments instead of directly using ReplicaSets,

unless you require custom update orchestration or don’t require updates at all.

118

Creating a Service

We have pods running nginx in a flat, cluster wide, address space. In theory, you could talk to

these pods directly, but what happens when a node dies? The pods die with it, and the

Deployment will create new ones, with different IPs. This is the problem a Service solves.

A Kubernetes Service is an abstraction which defines a logical set of Pods running somewhere

in your cluster, that all provide the same functionality. When created, each Service is assigned a

unique IP address (also called clusterIP). This address is tied to the lifespan of the Service, and

will not change while the Service is alive. Pods can be configured to talk to the Service, and

know that communication to the Service will be automatically load-balanced

that is a member of the Service.

You can create a Service for your 2 nginx replicas with kubectl expose:

out to some pod

kubectl expose deployment/my-nginx

119

Service

• Although Pods each have a unique IP address, those IPs are not exposed outside the cluster

without a Service.

• A Kubernetes Service is an abstraction which defines a logical set of Pods and a policy by

which to access them - sometimes called a micro-service.

• Services match a set of Pods using labels and selectors, a grouping primitive that allows

logical operation on objects in Kubernetes.

• Although Pods each have a unique IP address, those IPs are not exposed outside the cluster

without a Service.

• A Service routes traffic across a set of Pods.

120

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels

Service

121

Service

122

Expose a Service

Kubernetes allows you to define 3 types of services using the ServiceType field in its yaml file.

Valid values for the ServiceType field are:

• ClusterIP: use a cluster-internal IP only - this is the default and is discussed above. Choosing this

value means that you want this service to be reachableonly from inside of the cluster.

NodePort : on top of having a cluster-internal IP, expose the service on a port on each node of

the cluster (the same port on each node).You’ll be able to contact the service on any :NodePort

address.

LoadBalancer: on top of having a cluster-internal IP and exposing service on a NodePort also,

•

•

ask the cloud provider for a load balancer which forwards to the Service exposed as

a :NodePort for each Node.

123

Expose a Service

• kubectl expose deployment hello-nginx —name=example-service1 —port=8080 —

target-port=80

• kubectl describe services example-service

• ssh into cluster - minikube ssh

• curl http://<ClusterIP>:<port>

• kubectl expose deployment hello-nginx --type=NodePort —name=example-service2 —

port=80

• kubectl describe services example-service

• minikube service myservice —url

124

minikube - Node - IP

125

service IP

podIP

Creating Deployment using YAML

apiVersion: apps/v1beta1

kind: Deployment

metadata:
• Create an nginx pod, and

name: my-nginxnote that it has

container port

specification:

a
spec:

replicas: 2

template:

metadata:

labels:

• This makes it accessible
run: my-nginx

spec:from any

cluster

node in your
containers:

- name: my-nginx

image: nginx

ports:

- containerPort: 80

126

Creating a Service using YAML

This specification will create a Service which targets

TCP port 80 on any Pod with the run: my-nginx

label, and expose it on an abstracted Node port

apiVersion: v1

kind: Service

metadata:

name: my-nginx

labels:

run: my-nginx

spec:

type: NodePort

ports:

- port: 80

protocol: TCP

selector:

run: my-nginx

You should now be able to curl the nginx Service on

<NodeIP>:<PORT> from any node in your cluster.

127

• Exercise

128

sKillspeed
for the serious leamer

•

