

Azure DevOps: Complete CI/CD Pipeline

Page | 2

Disclaimer & Copyright

Copyright © 2019 by Mukesh Kumar

All rights reserved. Share this eBook as it is, don’t reproduce, republish, change or copy it. This is

a free eBook and you are free to give it away (in unmodified form) to whomever you wish. No

part of this publication may be reproduced, distributed, or transmitted in any form or by any

means, including photocopying, recording, or other electronic or mechanical methods, without

the prior written permission from the author.

The information provided within this eBook is for general informational purposes only. While

we try to keep the information up-to-date and correct, there are no representations or

warranties, express or implied, about the completeness, accuracy, reliability, suitability or

availability with respect to the information, products, services, or related graphics contained in

this eBook for any purpose. Any use of this information is at your own risk

The methods described in this eBook are the author’s personal thoughts. They are not intended

to be a definitive set of instructions for this project. You may discover there are other methods

and materials to accomplish the same end result.

Mukesh

Kumar Author

http://www.mukeshkumar.net/

Azure DevOps: Complete CI/CD Pipeline

Page | 3

About The Author

Mukesh Kumar is a Software Developer and Microsoft MVP who

has a Master’s degree in Computer Science. He is also C# Corner

MVP, Blogger, Writer and has more than seven years of extensive

experience designing and developing enterprise-scale applications

on Microsoft Technologies like C#, Asp.Net, Web API, Asp.NET Core,

Microsoft Azure, Angular 4+, JavaScript, Node.JS, Python etc.

He is a passionate author on www.mukeshkumar.net and believes

in the motto “Think for the new.”

You can also follow him on Facebook, Twitter, LinkedIn and Google+.

http://www.mukeshkumar.net/
http://www.mukeshkumar.net/
https://www.facebook.com/mukeshkumartech
https://twitter.com/mukeshkumartech
https://www.linkedin.com/in/mukeshkumartech
https://plus.google.com/%2Bmukeshkumartech

Azure DevOps: Complete CI/CD Pipeline

Page | 4

Table of Contents

1. About DevOps 5

1.1 Definition 5

1.2 Why DevOps 6

1.3 DevOps Lifecycle 7

1.4 Prerequisites 9

2. CI/CD Pipeline 11

3. Why Azure DevOps 13

4. DevOps Project Setup 15

4.1 Create Asp.Net Core Project 15

IPostRepository.cs 20

PostRepository.cs 21

HomeController.cs 22

Index.cshtml 23

4.2 xUnit Test Project 24

Install Microsoft.AspNetCore.All from NuGet (version 2.1.8) 27

PostTestController.cs 28

4.3 Add Project to GitHub 30

5. Create Organization and Project 34

6. Continuous Integration 38

7. Create Azure App Services 50

8. Continuous Delivery 59

8.1 Create Dev Stage 60

8.2 Create QA Stage 66

8.3 Create Prod Stage 79

9. Add Slot 90

10. Run and Test Azure DevOps Pipeline 97

Azure DevOps: Complete CI/CD Pipeline

Page | 5

Chapter 1. About DevOps

1.1 Definition

DevOps is a combination of Development and Operations. It means Dev + Ops = DevOps. It is a culture

which automates systems and improves and accelerates delivery to the client in a repeated manner. It’s

basically a collaboration between the Development team and the Operations team for serving up a

better quality application. It is a culture for continuous integration and continuous delivery where we

make the automated build system as well as automated deployment system. In other words, DevOps

is practice collaboration between Development and Operations from the planning of a project to

deployment on production. It involves the complete SDLC life cycle as well as monitoring.

Understanding DevOps, you should consider the following points as well,

• DevOps means only combining the two teams of Development and Operations.

• It is not a separate team.

• It is not a product or tool.

• DevOps people do not hire from outside, they are internal team members who are working either

in the development phase or in the operations phase.

It is a group of people, processes and tools. It basically brings two or more different teams, like

development and operations, together with a well-defined process, using some great tools for

automatic software delivery to the client. It is also a set of practices which are used by the DevOps teams

to speed up quality delivery. There are different kinds of tools or sets of tools which are used in

Continuous Integration (CI) and Continuous Delivery (CD) where it performs restoring the code,

building the processes, executing the test cases, and deploying on the stage environment, etc.

Azure DevOps: Complete CI/CD Pipeline

Page | 6

1.2 Why DevOps

To understand why DevOps is required, let’s first understand, what happens without DevOps.

As an IT consulting firm, while initiating a new project, we have two different kinds of teams. First is the

Development team, which is involved completely in developing and testing, including writing code and

unit test cases. The other team is the Operations team which is involved in operating and monitoring

the product.

• Without DevOps, both teams (Development and Operations) work completely in an

isolated manner.

• If DevOps is not there then the team spends most of the time in building the code and deploying

on multiple environments.

• Each team waits for others to be done. This means, if development is going on then the testing

team waits for the deployment of the code (Artifact) on the QA environment and in the same

manner the operations team waits for the deployment on the Production environment. So, due

to this, a large amount of time gets wasted.

• As a human being, we make mistakes. Building the code and deploying on specific environments

in a manual fashion can increase the issues and resolving it will take a lot of time. Rather than

doing it manually, we can make it automated using DevOps.

So, the above points show that we face lots of human issues and system issues if we are not following

DevOps. Now, let’s see how we can make it more systematic using DevOps and how DevOps helps us

to achieve the same tasks in less time without any errors.

• DevOps increases the higher success rate of new releases without any error.

• It helps us to simplify the whole development and deployment process.

• Automates the manual process like build process, release process, etc.

• Automates executing the test cases.

• Configures the continuous delivery and continuous deployment in the release cycle.

• Live monitoring.

• It also helps in team collaboration.

• Reduces the failures and rollbacks

• Provides continuous improvement

Azure DevOps: Complete CI/CD Pipeline

Page | 7

1.3 DevOps Lifecycle

DevOps is a culture where the Development and Operations teams get involved. The development

phase has its own lifecycle and the Operations phase has its own as well. If we combine both lifecycles,

we get the lifecycle of DevOps. If an organization is not following or considering some of the points from

the DevOps lifecycle then we can say, they are not following a DevOps culture. From planning to

deployment, we have several stages which are very important and we cannot skip any of them. So, let’s

understand the DevOps lifecycle.

PLAN

It is the first stage of any new project. Here, we plan for a new project from requirement gathering from

the customer and planning, to delivering the final project to the customer. We find out,

• What the requirements are.

• What types of product we have to create.

• What the timelines are for different sprints and the final product.

• What technologies we will use.

• What tools we will use.

• How many team members will be available for this project.

• What process we are going to follow, like Agile.

Azure DevOps: Complete CI/CD Pipeline

Page | 8

CODE

In this stage, we do the coding for creating the product with actual functionality as discussed with the

customer. We use different types of methodologies for achieving the goal, like Agile methodology. Here

we group the tasks in the sprint and their time estimation as well. Sprints are basically for 2-3 weeks.

Unit Test cases are also to be a part of the coding.

BUILD

In this stage, we build the code. Code building happens two times; first when a developer is writing the

code, then he/she has to build the code every time in their own local system to see the functionality.

The second time, when a team member checks in the code in the source control repository, then it

automates the build for the code and makes the artifact for deployment.

TEST

Testing is the heart of any development process. We write the Unit Test cases along with code. In

DevOps, test cases auto execute and validate the build process.

RELEASE

In this stage, it collects the build artifact which can deploy further.

DEPLOY

Here, we start the deployment on the respective stages which are configured in the Release Pipeline.

Actually after testing and validating the build artifact, it auto starts the deployment on the respective

environment using a continuous delivery process. But before deploying it to the production

environment, it asks for approval which can be done manually.

We can also automate the whole deployment process using continuous deployment. This is basically

used when we have small changes which can be deployed on production as well without any approvals.

OPERATE & MONITOR

After successful deployment on the production environment, we have to operate the whole system and

monitor the application. This monitoring is not only the performance but also the functionality.

Azure DevOps: Complete CI/CD Pipeline

Page | 9

1.4 Prerequisites

In order to do this practical demonstration, we will require a few tool and some accounts.

Visual Studio 2017 or Higher Version

It is a world class IDE which supports more than 40 programming languages. We will create the sample

application along with a test project using Visual Studio 2017. So, before starting the demonstration, we

will require Visual Studio 2017. If you would like to download Visual Studio 2017, we can download it

from HERE.

Alternatively,

1. We can also use the Visual Studio Code, which is totally open source and can be download

from HERE.

2. We can also create the Virtual Machine on the cloud (Cloud Account is required) and install

Visual Studio 2017.

https://visualstudio.microsoft.com/downloads/
https://code.visualstudio.com/download

Azure DevOps: Complete CI/CD Pipeline

Page | 10

Azure DevOps

We need an Azure DevOps account. If we have an account with Azure DevOps that’s fine; otherwise

we can sign up from HERE. Earlier it was known as VSTS (Visual Studio Team Service). We can also get

the free trial Azure DevOps account. Just click on the button ‘Get Azure DevOps Free’ as follows

https://visualstudio.microsoft.com/team-services/

Azure DevOps: Complete CI/CD Pipeline

Page | 11

Chapter 2.CI/CD Pipeline

Nowadays, the delivery process in software development is rapid. With the help of several tools, we try

to customize our delivery process. If the delivery process is smooth then we can deliver a high quality

of product to the customer within the timeline. Actually, customers want small changes or

functionalities to be added in the minimum amount of time. To enable a faster delivery process, we take

the help of some of the mechanisms like Agile and various tools and people, and this is called DevOps.

Let’s see what the old processes in development are and what happens if there are some issues.

1. Get the requirements from the business.

2. Make a plan for converting the requirements into the actual functionality.

3. Developers do the code and check in itto a repository like TFS, GitHub etc.

4. After all code checks in to the repository, a developer executes the build process.

5. Run the test cases against the code.

6. If everything is fine, code gets deployed on the DEV server and then on QA.

7. If QA confirms it’s okay then deployment begins on PROD.

Above is the general development workflows which are used mostly in small organizations. But is this

process correct? Let’s understand the problem with the above development and delivery process.

1. Every time a developer checks in the code into a repository, he/she doesn’t know about build.

Is build created successfully or not?

2. Developers should wait for other developers to do the checking in of the code and building

of the code before deploying to DEV/QA server.

3. If a developer has completed his/her work and has checked in the code, they have to wait for

other developers to check in the code as well.

4. If something is wrong with any part of the code then the build cycle will stop and have to wait

until the issue is resolved.

5. As a human being, we make a lot of mistakes. We can also make a mistake while doing

manual deployment.

6. There are chances to get more issues from development to deployment.

As we can see with the above points, there are several issues while using the old deployment process,

which also needs more time for manual deployment, more resources for completing manual

deployment, and obviously more money. We can resolve all of the above issues if we implement Azure

DevOps. In Azure DevOps, we have Continuous Integration (CI) and Continuous Delivery (CD).

These help us to make the whole process automated. So, let’s understand what these are.

Azure DevOps: Complete CI/CD Pipeline

Page | 12

Continuous Integration (CI)

It is an automated build process which starts automatically when a developer checks in the code into

the respective branch. Once the code check in the process is done, the continuous Integration process

starts. It fetches the latest code from the respective branch and restores the required packages and

starts building automatically. After the build process, it auto starts executing the Unit Test Cases and at

the end, the build artifact is ready. This build artifact further will be used for deployment in the release

process.

Continuous Delivery (CD)

It is the next process after Continuous Integration. Once the build artifact is ready for deployment then

the release process gets started. As per the Azure DevOps Release Pipeline configuration, it starts

deploying the build artifact on a different stage server (Environments) automatically. But in the

Continuous Delivery, the deployment on the production goes manual. Manual does not mean here that

we will deploy the build artifact manually, but that we have to approve it before deploying it on the PROD.

Continuous Deployment

It is the combination of CI + CD and deployment on the production without any approval. It means,

in Continuous Deployment, everything goes automatically.

As per the above image, we can see that once a developer checks the code into the Version Control, the

Azure DevOps Pipeline starts. From getting the code from Version Control, restoring it, and restoring

packages from NuGet, Maven etc., to building the code and executing the unit tests cases, these are all

part of the Continuous Integration (CI).

Including Continuous Integration, if the build artifact gets auto-deployed on any staging server like DEV or

Azure DevOps: Complete CI/CD Pipeline

Page | 13

QA and deploys on the Production after manual approval, this is called Continuous Delivery (CD). If

manual approval is converted into automatic deployment then it’s called Continuous Deployment. So,

basically Continuous Deployment is the same as Continuous Delivery but without any manual approval.

All goes in auto approval mode.

Azure DevOps: Complete CI/CD Pipeline

Page | 14

Chapter 3.Why Azure DevOps

DevOps is a group of people, processes and tools which enable and automate continuous

delivery. Azure DevOps, formerly known as Visual Studio Team Service (VSTS), provides the repository

management, project management, Build/Release Pipeline etc. Azure DevOps is free for a small project

which has up to five users. But we can also use the paid version of it.

Azure DevOps provides unlimited cloud-hosted Git repos for a small or big project. Here developers can

pull the code from Repos or push the code into Repos. It is basically a complete file management

system.

While building the source code, it requires lots of third-party packages. Using Azure Artifacts, it enables

the NPM, MAVEN or NuGet packages to be available for private or public source code.

The most important feature of Azure DevOps is the Azure pipeline. It enables the automated build and

release pipeline. Azure Pipeline helps us to achieve Continuous Integration and Continuous Delivery for

the project. Know more updates about Azure DevOps HERE.

https://azure.microsoft.com/en-in/services/devops/

Azure DevOps: Complete CI/CD Pipeline

Page | 15

Microsoft Azure DevOps is most popular and widely-used throughout the world because it is free for

Open Source Projects and Small Teams Projects. We can use lots of Azure DevOps features with the

free version like Azure Pipeline, Azure Boards, Azure Repos, and Azure Artifacts. It means, we don’t need

to go for the paid version of Azure DevOps, if and only if we want to use those features which are in free

versions.

Azure DevOps: Complete CI/CD Pipeline

Page | 16

Chapter 4.DevOps Project Setup

In this session, we will create a project in Visual Studio 2017 or higher version which will be used for this

demonstration. Apart from the main project, it will also include a testing project, where all required Unit

Test Cases will write. For this demonstration, we are using Visual Studio 2017 but anyone can use a

higher version of Visual Studio for creating the Asp.NET Core. So, let’s start by creating the Asp.Net Core

project along with xUnit testing project for DevOps Demo.

4.1 Create Asp.Net Core Project

Let’s create an Asp.Net Core Project in Visual Studio. Open Visual Studio 2017 or higher version and

go to the File menu and choose New and then Project.

A “New Project” dialog window will open as follows, as we are going to create a .Net Core application.

So, move to the first panel and from Installed, choose Visual C# > Web > .Net Core. Here we will find

different kinds of .Net Core application templates. We will select ASP.NET Core Web Application.

After selecting the .Net Core application template, provide a suitable name for the project as well

as a solution name like DevOpsDemo. This project is being created for a DevOps demonstration, so

let’s keep the name simple, as DevOpsDemo. Don’t forget to provide the project location and click on

OK.

Azure DevOps: Complete CI/CD Pipeline

Page | 17

The next dialog window will ask to choose the Project template, here, we are working on ASP.NET

Core 2.1. We have different kinds of project templates available like API, Web Application, Model View

Controller etc. Here we will select Web Application (Model-View-Controller) which enables the

functionality of MVC. Apart from this, we require two more things; first check on the checkbox for

configuring the HTTPS and change authentication and choose No Authentication. Now click on OK.

Azure DevOps: Complete CI/CD Pipeline

Page | 18

It will take a few moments to create and configure the project and the final project will be ready. Once

the project is ready, we can see the basic MVC structure application in ASP.NET Core Web Application.

Let’s add some Model-View-Controller functionality. So, let’s create a Model class for ‘Post’. Right click

on the Model folder from the project and choose Add and then choose Class.

Azure DevOps: Complete CI/CD Pipeline

Page | 19

It will open the Add New Item dialog window, and from here we can choose different kinds of Model

data files like class, interface etc. So, just choose Class and provide the name for the class as

‘PostViewModel.cs’ and click on Add.

Azure DevOps: Complete CI/CD Pipeline

Page | 20

Open the PostViewModel and update the class’s code as follows. Here we are adding four properties

like PostId, Title, Description and Author for PostViewModel class.

namespace DevOpsDemo.Models
{
 public partial class PostViewModel
 {
 public int PostId { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public string Author { get; set; }
 }
}

The next step is to create repository information. So, let’s create one more folder for repository classes

and interfaces as Repository. Once Repository folder is created then right click on folder and select

Add > New Item. It will open Add New Item dialog window from where we can select the file type. So,

first select an Interface and provide the name for interface as IPostRepository.cs and click on Add.

Azure DevOps: Complete CI/CD Pipeline

Page | 21

Update the code for the IPostRepository interface as follows. Here we are adding one method which

will return the list of Post.

IPostRepository.cs

using DevOpsDemo.Models;
using System.Collections.Generic;

namespace DevOpsDemo.Repository
{
 public interface IPostRepository
 {
 List<PostViewModel> GetPosts();
 }
}

Azure DevOps: Complete CI/CD Pipeline

Page | 22

The same process needs to be followed to add one new class as PostRepository.cs in Repository folder

as follows.

Here is the PostRepository class which implements the IPostRepository. We are creating some

dummy data for Posts. We are keeping it simple and not implementing the database-driven functionality

for getting the real time data. It is because this demonstration is only for understanding how DevOps

works and how we can implement Continuous Integration and Continuous Delivery.

PostRepository.cs

using DevOpsDemo.Models;
using System.Collections.Generic;

namespace DevOpsDemo.Repository
{
 public class PostRepository : IPostRepository
 {
 public List<PostViewModel> GetPosts()
 {
 var posts = new List<PostViewModel> {
 new PostViewModel(){ PostId =101, Title = "DevOps Demo Title 1", Description ="DevOps Demo
Description 1", Author="Mukesh Kumar"},
 new PostViewModel(){ PostId =102, Title = "DevOps Demo Title 2", Description ="DevOps Demo
Description 2", Author="Banky Chamber"},

Azure DevOps: Complete CI/CD Pipeline

Page | 23

 new PostViewModel(){ PostId =103, Title = "DevOps Demo Title 3", Description ="DevOps Demo
Description 3", Author="Rahul Rathor"},
 };

 return posts;
 }
 }
}

Now, it’s time to show the data which are returning from repository on View. So, let’s open the

HomeController and implement the constructor dependency injection for getting the instance

of the PostRepository class and create a ActionResult as Index. Here, in the Index method, we will

fetch the data using PostRepository instance and return the data into the View.

HomeController.cs

using DevOpsDemo.Models;
using DevOpsDemo.Repository;
using Microsoft.AspNetCore.Mvc;
using System.Diagnostics;

namespace DevOpsDemo.Controllers
{
 public class HomeController : Controller
 {
 IPostRepository postRepository;
 public HomeController(IPostRepository _postRepository)
 {
 postRepository = _postRepository;
 }

 public IActionResult Index()
 {
 var model = postRepository.GetPosts();

 return View(model);
 }

 public IActionResult About()
 {
 ViewData["Message"] = "Your application description page.";

 return View();
 }

 public IActionResult Contact()
 {
 ViewData["Message"] = "Your contact page.";

Azure DevOps: Complete CI/CD Pipeline

Page | 24

 return View();
 }

 public IActionResult Privacy()
 {
 return View();
 }

 [ResponseCache(Duration = 0, Location = ResponseCacheLocation.None, NoStore = true)]
 public IActionResult Error()
 {
 return View(new ErrorViewModel { RequestId = Activity.Current?.Id ?? HttpContext.TraceIdentifier });
 }
 }
}

We will populate the data on View in tabular format. So, once data will be there, we will iterate on it and

display the data as follows.

Index.cshtml

@model IList<DevOpsDemo.Models.PostViewModel>
@{
 ViewData["Title"] = "Home Page";
}
<div class="row">
 <h2>Post List</h2>
 <table class="table">
 <thead>
 <tr>
 <th>Post Id</th>
 <th>Title</th>
 <th>Description</th>
 <th>Author</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model)
 {
 <tr>
 <td>@Html.DisplayFor(modelItem => item.PostId)</td>
 <td>@Html.DisplayFor(modelItem => item.Title)</td>
 <td>@Html.DisplayFor(modelItem => item.Description)</td>
 <td>@Html.DisplayFor(modelItem => item.Author)</td>
 </tr>
 }
 </tbody>
 </table>
</div>

Azure DevOps: Complete CI/CD Pipeline

Page | 25

4.2 xUnit Test Project

Testing is an important aspect of any product. Without testing, we cannot think that a product is ready

to be delivered. We do the testing in many ways but in the development phase, while writing the code

for specific functionality, we write the test cases against the functionality and check if everything is

working fine as expected or not.

Unit Test Cases help us to find the bugs or issues in the code in the earlier stage while building the code.

At the time of building the code and creating the artifact, it also executes the test cases and if test cases

are failing, it means, something is wrong and functionality is not as expected.

Here, we will create a separate testing project for ASP.NET Core Web Application. So, let’s right click on

the DevOpsDemo solution and select Add > New Project as shown in the following image.

It will open the New Project dialog window. Here we have to follow the same process as we have done

above for creating the new ASP.NET Core Web Application project. Only since we have to change the

application template for a testing project, we will choose the xUnit Test Project (.Net Core). After

selecting the project template, provide the name of the testing project as DevOpsDemo.Test and click

on OK.

Azure DevOps: Complete CI/CD Pipeline

Page | 26

Within a few seconds, the xUnit testing project will be ready. It will contain one unit test class as

UnitTest1.cs. Before moving to the next page, just rename UnitTest1 to PostTestController.

We will now test the main project functionality. So, it is time to add the main project reference in the

test project so that we can access the repository and controller for writing the test cases. So, Right click

on the Dependencies in testing project and select Add Reference. It will open the Reference

Manager for DevOpsDemo.Test project. From the Projects section in left panel, select the

DevOpsDemo (mark checked) and click to OK.

Azure DevOps: Complete CI/CD Pipeline

Page | 27

Install Microsoft.AspNetCore.All from NuGet (version 2.1.8)

This is the xUnit testing project, and by default we cannot get all the Asp.Net Core functionality. So, let’s

first add the packages which will provide a complete set of APIs for building the Asp.NET Core

application. Let’s right click on Dependencies and select Manage NuGet Packages. It will open the

NuGet Package Manager from where new packages can be searched for installation, or see the

installed packages, or see if any update is available for any package.

So, go to the Browse section and search for Microsoft.AspNetCore.All in the search section and install

it. For this demonstration, we are using version 2.1.8 for Microsoft.AspNetCore.All.

Azure DevOps: Complete CI/CD Pipeline

Page | 28

Azure DevOps: Complete CI/CD Pipeline

Page | 29

Open the PostTestController and write the few unit test cases for HomeController as follows.

PostTestController.cs

using DevOpsDemo.Controllers;
using DevOpsDemo.Models;
using DevOpsDemo.Repository;
using Microsoft.AspNetCore.Mvc;
using System;
using System.Collections.Generic;
using Xunit;

namespace DevOpsDemo.Test
{
 public class PostTestController
 {
 private PostRepository repository;

 public PostTestController()
 {
 repository = new PostRepository();

 }

 [Fact]
 public void Test_Index_View_Result()
 {
 //Arrange
 var controller = new HomeController(this.repository);

 //Act
 var result = controller.Index();

 //Assert
 Assert.IsType<ViewResult>(result);
 }
 [Fact]
 public void Test_Index_Return_Result()
 {
 //Arrange
 var controller = new HomeController(this.repository);

 //Act
 var result = controller.Index();

Azure DevOps: Complete CI/CD Pipeline

Page | 30

 //Assert
 Assert.NotNull(result);
 }

 [Fact]
 public void Test_Index_GetPosts_MatchData()
 {
 //Arrange
 var controller = new HomeController(this.repository);
 //Act
 var result = controller.Index();
 //Assert
 var viewResult = Assert.IsType<ViewResult>(result);
 var model = Assert.IsAssignableFrom<List<PostViewModel>>(viewResult.ViewData.Model);
 Assert.Equal(3, model.Count);
 Assert.Equal(101, model[0].PostId);
 Assert.Equal("DevOps Demo Title 1", model[0].Title);
 }
 }
}

Let’s open the Test Explorer and click to Run All as shown in following image to start executing the unit

test cases, which start building the solution and start executing the unit test cases. Once all unit test

cases run then you can see the status as green. As per the following image, we can see that all test cases

are passed.

Azure DevOps: Complete CI/CD Pipeline

Page | 31

4.3 Add Project to GitHub

Now it’s time to add this above project to any repository like TFS, GitHub, Bitbucket etc. so that we can

access it while setting up Azure DevOps pipeline. Let’s choose the GitHub so that it will be accessible

publicly. So, right click on the Solution (DevOpsDemo) and select Add Solution to Source Control. It

will add your file in a local repository

Now, go to Team Explorer, here we can find the ‘Sync’ option, just click on it. It will open the window

from where we can publish code to a particular repository like GitHub as follows.

Here, we will choose the Publish to GitHub, so that we can publish this code to GitHub public

repository.

Azure DevOps: Complete CI/CD Pipeline

Page | 32

Once we click on the Publish to GitHub, it will ask for Authentication with your GitHub account. Let’s

provide the credentials to log in with GitHub Account. After logging in with GitHub, we will get the following

screen. Here, we can provide the name and description of the repository which will create in GitHub for

adding this project. We can make it private to check the checkbox for Private Repository. For this

demonstration, we will keep it public, so let’s click on the Publish button.

It will take few minutes to create the new repository in GitHub with provided name and publish the

whole code into this repository.

Azure DevOps: Complete CI/CD Pipeline

Page | 33

Now, go to following GitHub URL where we can find the published code for this whole demonstration.

https://github.com/mukeshkumartech/DevOpsDemo

https://github.com/mukeshkumartech/DevOpsDemo

Azure DevOps: Complete CI/CD Pipeline

Page | 34

Chapter 5.Create Organization and

Project

Let’s move to https://visualstudio.microsoft.com and create new account or sign in with existing

credentials.

Once we are logged in successfully, then we have a new screen as follows. From here we can create a

new organization on clicking ‘Create new organization’ button.

We have another option to create the organization, if we have already an organization and we would

like to add a new one then we can create one using the Create Organization option as follows.

https://visualstudio.microsoft.com/

Azure DevOps: Complete CI/CD Pipeline

Page | 35

It will take a few seconds to configure the Azure DevOps new organization

Azure DevOps: Complete CI/CD Pipeline

Page | 36

Next screen will ask about the name of the Azure DevOps organization, here we are giving the name

as ‘TechHubOrg’, we also have to provide the hosting location as ‘South India’ for our organization. At

the time of creating the new organization, we can also provide the name of the project. This project will

auto create inside this new organization. Now, fill in the security question and click the Continue button.

Azure DevOps: Complete CI/CD Pipeline

Page | 37

The next screen will open the project which has been created recently at the time of creating the

organization. Here, we have created DevOpsDemo project inside the TechHubOrg organization.

Following is the welcome screen for the DevOpsDemo project. From here, we can manage all the things

like Boards, Repos, Pipeline and Test Plans etc. which will be project specific.

Azure DevOps: Complete CI/CD Pipeline

Page | 38

Chapter 6.Continuous Integration

Let’s create the Azure Build pipeline. Build pipeline is basically responsible for building the code and

testing the corresponding Unit Test Cases once the developer checks in the code into the repository. If

everything will be fine, then it will create the Artifact which can be used for deployment.

For creating the build pipeline in Azure DevOps, click on Pipeline and select Build as shown in the

following images.

The next screen says that we don’t have any build pipeline setup yet and it has one button as new

pipeline for creating a new one. So, let’s click on New Pipeline. It will only create the build pipeline.

Azure DevOps: Complete CI/CD Pipeline

Page | 39

After clicking on New Pipeline, it will start the wizard for setting up the build pipeline. It will basically

ask for the location of the code repository file and do some configuration.

Here, we will not go with Wizard process, we will use the Visual Designer for creating and configuring

the Azure DevOps Build pipeline. So, let click on the link ‘Use the Visual Designer’ as shown in below

image.

Azure DevOps: Complete CI/CD Pipeline

Page | 40

As we select the Visual Designer, it will ask to choose the repository. All available repositories are part

of the Azure DevOps like Azure Repo Git, GitHub, Bitbucket etc. We have already pushed our project

code which we have already created above in GitHub. So, select the GitHub and provide the connection

name, which we will use further. Now, click to Authorize using OAuth. It will open a dialog window for

logging in to GitHub. Here we have to provide the GitHub credentials for Authorization with GitHub.

Azure DevOps: Complete CI/CD Pipeline

Page | 41

Once we authorize with the GitHub account then we can see all GitHub repositories. Here we have to

select DevOpsDemo because we have created and added our project code into DevOpsDemo

repository.

Let’s select the repository and then the branch, by default it will be master [Other branches can also

be selected] and click to Continue.

Azure DevOps: Complete CI/CD Pipeline

Page | 42

Azure DevOps: Complete CI/CD Pipeline

Page | 43

Next screen will ask about selecting the project template, as we have created the Asp.Net Core

application. So, here we will choose the Asp.Net Core and click to Apply.

Next screen will be about Azure DevOps Build pipeline configuration like the name of the build

pipeline, restoring the code from repository, building the code, testing the unit test cases etc.

By default, Tasks tab will be selected. Here we can provide the name of build pipeline as we have

given it as ‘DevOpsDemo-CI’.

We have two options for the project, first as ‘Projects to restore and build’. For our case, we don’t need to

do anything. Let’s keep the default one. Second is ‘Project to test’, here, our testing project name was

DevOpsDemo.Test. So, we will mention it inside ‘Project to Test’.

By default, we have available jobs like Restore, Build, Test and Publish. If anything else is required

and we would like to perform in between in build process, we can add a new job using the + sign.

Azure DevOps: Complete CI/CD Pipeline

Page | 44

Let’s move to Variables tab, here we can configure the build setting like Build Configuration, Build

Platform.

Azure DevOps: Complete CI/CD Pipeline

Page | 45

Move to the next tab, ‘Triggers’. It is a very important tab from where we can enable the Continuous

Integration. So, just check the checkbox for Enable Continuous Integration. It means, as we will check in

our code into repository, it will auto start the building code and creating the build artifact which will be

deployed in the release cycle.

If we have multiple branches and we would like to filter any specific branch then we can define it into

Brach Filters section.

Let’s move to Options tab, here we get the options to define the build version number using ‘Build

number format’ section. This one is in a default format, but we can modify it as per our requirement.

Create work item on failure is also a great feature which is used to create a new work item once the

build fails. In a Build Job section, we can define the build job timeout in minutes.

Azure DevOps: Complete CI/CD Pipeline

Page | 46

Azure DevOps: Complete CI/CD Pipeline

Page | 47

Now, time to move on to the Retention tab. Here we can define for how many days,we would like to

keep the build information and how many good builds we would like to keep for those days. Everything

can be set up here. Apart from these, we can also define what information should be deleted and what

should not when clearing the build information.

Let’s move to the History tab; here we are doing the setup of the Azure DevOps build cycle, so we

don’t have any history information. But in the future, when any build cycle performs then we can see all

the history here.

We have finished configuring the Azure DevOps Build Pipeline, now let’s click to Save and Queue.

Azure DevOps: Complete CI/CD Pipeline

Page | 48

Once we will click to Save and Queue then it will ask for confirmation. So, just click to Save and Queue

button once more as follows.

After clicking on Save and Queue button. first it will save the configuration for build pipeline and start

queuing a build. As per the following image, we can see a message ‘Build #20190216.1 has been

queued’.

Azure DevOps: Complete CI/CD Pipeline

Page | 49

Let’s click on the build # number and we can see the log for jobs which are performing. As per the

following images, build has already processed the Initialize Job, Checkout Job, Restoring the Code Job

and now has moved on to Build. It is performing the Build.

After build completes, it will move to Test the Unit Test Cases, which we have already defined at the

time of creating the Build Pipeline.

Azure DevOps: Complete CI/CD Pipeline

Page | 50

After few minutes, we can see that all jobs complete successfully as follows with succeeded message.

If something is wrong with our code then it will fail with proper information.

Here, we have to confirm that our Unit Test Cases have executed and passed successfully or not. So,

let’s move to the Tests tab, here we can see the summary of executed Unit Test Cases. We had created 3

Unit Test Cases and all have been passed.

Azure DevOps: Complete CI/CD Pipeline

Page | 51

We will also learn about any build process that completes in the Azure DevOps Build pipeline through

Email as follows.

Azure DevOps: Complete CI/CD Pipeline

Page | 52

So, we have performed several things as follows,

• Created the Azure DevOps Build Pipeline.

• Configured the Build Pipeline and enabled Continuous Integration.

• Saved the Build and Queued the Default Build.

• Azure DevOps Build has executed successfully.

• Unit Test Cases have passed successfully.

Azure DevOps: Complete CI/CD Pipeline

Page | 53

Chapter 7.Create Azure App Services

As we have finished creating the Build Artifact in Azure DevOps Build Pipeline which can be deployed,

now we have to see how we can deploy it to a web app. But before moving to the Release lifecycle, first

we will create the 3 web apps (DEV, QA and PROD) where we can deploy our artifact in different stages.

Before moving on, as we have explained above we will require an Azure Subscription. So, open

https://portal.azure.com and log in with your credentials. Once we log in, we can see the default

Dashboard for Azure Portal as follows. Here we have different options available to create the VM, Web

App, Storage etc.

Azure App Service is a fast and simple way to create web apps using Java, Node, PHP or

ASP.NET, as well as supporting custom language runtimes using Docker. A continuous

integration and continuous deployment (CI/CD) pipeline that pushes each of your

changes automatically to Azure app services allows you to deliver value to your

customers faster.

We are here to create 3 web apps. So for doing that let’s click on ‘App Services’ from the left panel just

after SQL Database [See the above image]. It will open the App Services page from where we can create

new App Services. We don’t have any App Services in our bucket. So, let’s create a new App Service by

clicking on the button ‘Create App Service’.

https://portal.azure.com/

Azure DevOps: Complete CI/CD Pipeline

Page | 54

The next screen will provide us with different kinds of templates available for creating the App Services.

Here we will create a simple Web App. So, click on Web App.

Azure DevOps: Complete CI/CD Pipeline

Page | 55

From the Web App section, we have to click on Create.

The next screen will ask for some information before creating the Web App. So, provide the name of a

web app as ‘TestDEV-100’. The name should be consistent throughout the Azure Portal. Next, we have

to provide the Azure Subscription. Next, we have to provide the Resource Group. We can reuse this if

we have already created it, but for this demonstration we are creating a new one.

The next option is App Service Plan and Location. It is used to track what we have used and how much

we have to pay per used resource. For the rest of the options just keep the default and click on the

Create button.

Azure DevOps: Complete CI/CD Pipeline

Page | 56

It will start the validating the information which we have provided. Once validation succeeds, it will start

creating the Web App Service. It might take time to create the Web App Service depending on our

network speed. We can see the progress of creating the Web App Service in the Notification bar.

Just click on the Notification icon and it will open the windows something like below. Here we will get

notified that our resource (Web App) has been created and we have an option to Go to Resource.

Azure DevOps: Complete CI/CD Pipeline

Page | 57

Click on Go to Resource. It will open the page where we can get all the information for newly created

web apps (TestDEV-100). Here we can see the location of the resource where it was created, URL of

web app for accessing it, and many more options for deployment like username and password.

At the top, we have couple more option for this Web App, like we can stop the Web App if it is running.

We can restart it , we can delete it. If we would like we can get the publish profile which could be used

for publishing the artifact on this web app.

Azure DevOps: Complete CI/CD Pipeline

Page | 58

Let’s move to App Services and follows the same process as we have followed for creating the TestDEV-

100 web app and create two more Web Apps like TestQA-100 and TestPROD-100.

For the QA environment, we will create the TestQA-100 Web app.

Azure DevOps: Complete CI/CD Pipeline

Page | 59

Once TestQA-100 is created successfully, we will get the information as follows.

For the PRDO environment, we will create the TestPROD-100 Web app.

Azure DevOps: Complete CI/CD Pipeline

Page | 60

Once TestPROD-100 web app has been created successfully, we will get all information about this

resource as follows.

Azure DevOps: Complete CI/CD Pipeline

Page | 61

Now, let’s move to the Resouce page. Here we can find all the newly-created App Services. We have 3

web apps for the DEV, QA and PROD environment respectively. Apart from that we have one App

Service Plan, under which all app services will run.

So far, we have created the Azure DevOps Build Pipeline successfully and were able to create the build

artifact. Apart from this, we have created 3 web apps for different environments like DEV, QA and PROD.

These app services will be used in Azure DevOps Release Pipeline for deployments.

Azure DevOps: Complete CI/CD Pipeline

Page | 62

Chapter 8.Continuous Delivery

Let’s move on to our DevOpsDemo project in Azure DevOps using the following URL.

https://dev.azure.com/TechHubOrg/DevOpsDemo.

Click to Pipeline and choose Releases for creating new Azure DevOps Release Pipeline.

The next screen will show all the release pipelines if we have any. But we haven’t created any so far. So,

let’s create a new one and click on New Pipeline.

https://dev.azure.com/TechHubOrg/DevOpsDemo

Azure DevOps: Complete CI/CD Pipeline

Page | 63

8.1 Create Dev Stage

The next screen will ask to configure the Release Pipeline, such as what service we will use, which

Artifact we will use for deployment, what template we will use for deployment etc. So, select a template

as Azure App Service Deployment and click on Apply. As we have already created 3 app services above

for deployment for different environments like DEV, QA and PRDO, we will choose TestDEV-100 for this

DEV stage.

Azure DevOps: Complete CI/CD Pipeline

Page | 64

By default the name of the Release Pipeline is ‘New Release Pipeline’. We will change it later.

After selecting the template as Azure App Service Deployment, it will ask to provide the name for this

stage. This is our first stage, so provide the Stage Name as ‘DEV’ and click on the close (X) button in the

right top corner (Only for closing this dialog, don’t close the page itself.).

Once we close the stage dialog then we will get the screen something like below. Here, we have two

sections for now. The first one is the Artifact section. Here we will add the Artifact which is created in

Azure DevOps Build Pipeline. Another section is the Stage section. We could have multiple stages like

DEV, QA, PRDO etc or many more as per the requirement.

Azure DevOps: Complete CI/CD Pipeline

Page | 65

Click on Add an Artifact. It will open a popup a dialog window in the right side as follows. Here we will

configure the Artifact. So, first select the Source Type as Build, because we will take the Artifact for

deployment from the Build Pipeline. Next select the name of the project as DevOpsDemo. Next we

have to select the Source (Build Pipeline). As we have Build Pipeline as ‘DevOpsDemo-CI’, select it. For

the rest of the options keep the default and click on Add.

Azure DevOps: Complete CI/CD Pipeline

Page | 66

Once we click on Add, it will add the ‘_DevOpsDemo-CI’ artifact. Now, we have available the Artifact

which can be deployed to any environment. So, enable the Continuous Deployment. Click on the

Continuous Deployment Trigger as we can see in the below image. It will open the Continuous

Deployment Trigger dialog window in the right. Enable the Continuous Deployment Trigger which

will create a new release every time a new build is available. Keep all other options as default.

Azure DevOps: Complete CI/CD Pipeline

Page | 67

Close the Continuous Deployment Trigger dialog window. So we have finished the setup of the

Continuous Deployment Trigger, if a new build is there then it will deploy to its respective environment.

Now let’s move to the Stages section and click to ‘1 Job, 1 Task’ in DEV stage for configuring the DEV

environment so that if a new build is there it auto deploys on the DEV environment.

Each stage in the Release pipeline has its own configuration. We have to move to the Tasks tab, here

we can provide or modify information like stage name, Azure Subscription etc. The most important

configuration is App Service name. We will define the TestDEV-100 web app in App Service Name so

that after building the application, it can deploy on DEV server first.

We don’t have to do it in the Variables tab section, let it be the default value and move to the Retention

tab. Here we can do the setting for the DEV environment like how many days we would like to retain

the release information and how much release information we want to keep.

Azure DevOps: Complete CI/CD Pipeline

Page | 68

Now let’s move to the Options tab, here we can provide the information about this Release, such as the

description of the Release and what will be format of the Release Name. By default, it will create a

default format for the release name but it can be modified.

The next tab is the History tab. Here for now, we will not find anything. It will be empty because we

haven’t run any release cycle yet.

After configuring all tabs as per the requirements, it’s time to save the information. So, click on Save.

After creating and saving the release pipeline, we can see our configured Azure DevOps Release pipeline

as follows.

We can see the Release pipeline anytime from Pipeline>Releases. Here we can see all the available

Release pipelines. If we would like to Edit and then we can edit also.

Azure DevOps: Complete CI/CD Pipeline

Page | 69

Click on the Edit button (as shown in above image) for editing the Release Pipeline. Once we click

to edit the release pipeline, it will open the same page from where we can define the artifact and other

stage information.

So, first modify the name of the Release Pipeline. Click on the ‘New release pipeline’ text just after All

pipelines and rename it with ‘Test100-Release’. So, we have changed the name of the Azure DevOps

Release Pipeline name.

8.2 Create QA Stage

We have already set up the DEV environment. If a new build is available it will deploy to the Dev

(TestDEV-100 Web App) environment. But let’s add one more stage for QA (TestQA-100).

For adding a new stage, we can directly click to the (+ Add) icon just after Stages or mouse hover just

below to the DEV stage, here we will get the icon (+ Add). Just click on it.

Azure DevOps: Complete CI/CD Pipeline

Page | 70

So, it has added one more stage in Azure DevOps Release Pipeline. Now, it is asking us to select the

template. We have to follow the same process which we have already followed for DEV (TestDEV-100)

environment setup. So, select the template as ‘Azure App Service Deployment’ and click to Apply

button.

Close the ‘Select Template’ dialog window and we will see that one more stage (Stage 1 – in above

image) has been added just after DEV stage. Now, click on Stage 1 and change the stage name to QA

as shown in the following image.

Azure DevOps: Complete CI/CD Pipeline

Page | 71

Now close the Stage name dialog using the close (X) icon in the right top corner. It’s time to configure

the QA (TestQA-100) environment. So, click on the ‘1 Job, 1 Task’ in QA stage.

Here, we have to configure the QA stage. The first tab is Tasks tab. Here we will do the configuration as

we have already done for DEV stage. So, provide the Azure Subscription and most important the App

Service Name as ‘TestQA-100’.

For the rest of the tabs like Variables, Retention, Options and History, we are not going to do

anything. We will keep the default setting for these tabs. But we can modify it as per our requirements.

Now click to Save.

Azure DevOps: Complete CI/CD Pipeline

Page | 72

This time, we have two stages, DEV and QA. What we have configured so far will deploy automatically

on the DEV stage if a new build becomes available. But what about QA? How we will deploy on QA?

Actually for build deployment, it will deploy automatically to all stages one by one once the build is

available. But here we would like some confirmation before deploying on the QA stage.

So, configure the ‘Pre-Deployment Conditions’. Click on the ‘Pre-Deployment Conditions’ from the

QA stage as shown in the below image.

Enable the Pre-Deployment Approvals and provide the name of the approver in the Approvers

section. For this demonstration, we are providing the current user name, ‘Mukesh Kumar’. So, now

after DEV deployment, the Artifact will not auto deploy to QA. It will first wait for approval by Mukesh

Kumar.

Azure DevOps: Complete CI/CD Pipeline

Page | 73

We have finished with the QA environment setup. Click to SAVE for saving the Azure DevOps

Release Pipeline with new stage as QA.

So, what we have achieved so far: We have configured the Azure DevOps Build Pipeline as well

as Release pipeline. In Release pipeline, we have created two stages for two different

environments like DEV and QA. So, if a new build (Artifact) is available then it first will

deploy to DEV (TestDEV-100) environment and will ask for approval before deploying

it to QA (TestQA-100).

Now, it’s time to see the real time deployment and how the build deploys on different stages. So, open

the Visual Studio 2017 or higher version. And open the project ‘DevOpsDemo’, which we have created

in the previous section.

Open the Index.cshtml file in main project and replace the text for title from ‘Home Page’ to ‘Home

Page Release 3.0’. And similarly change the text ‘Post List’ with ‘Post List Release 3.0’. Here we will

only change the version number and see the output after auto deployment.

Azure DevOps: Complete CI/CD Pipeline

Page | 74

It’s time to check the code in the GitHub repository. So, go to Team Explorer > Changes > provide the

comment as ‘Home Page Release 3.0’ and click to ‘commit all and sync’.

Azure DevOps: Complete CI/CD Pipeline

Page | 75

When we open the Build Pipeline, in the history tab, we can see that a new Continuous Integration

build is started with the same comment which we have provided at the time of checking the code as

‘Home Page Release 3.0’.

Click on the newly-begun build and we will see that all the Jobs are executing one by one as follows.

Azure DevOps: Complete CI/CD Pipeline

Page | 76

Once all jobs execute successfully, then we can see the ‘succeeded’ message in green for each Job.

Let’s now move to Azure DevOps Release Pipeline and open Test100-Release. Here we can see that

one release is initiated as ‘Release-1’ and DEV is processing this.

Azure DevOps: Complete CI/CD Pipeline

Page | 77

Now, click on the Release-1 for detailed information. As per the following image, we can see that an

artifact (build) is available and this is performing the Continuous Deployment on DEV (TestDEV-100)

environment. It is in progress.

After a few minutes, we will see that Continuous Deployment has begun on DEV. But for QA, it is

pending for approval. Once a current user (Mukesh Kumar), as we have defined earlier, approves it,

then Continuous Deployment will start on QA.

Azure DevOps: Complete CI/CD Pipeline

Page | 78

So, let’s first check what has been deployed on the DEV environment. So, open the TestDEV-100 App

service. Here we can find the URL for accessing the TestDEV-100 app service and it is https://testdev-

100.azurewebsites.net. Open this in browser, and here we go.

Great, as we can see with the below image, the Release 3.0 on DEV (TestDEV-100) environment has

been successfully deployed. We can see both the title and post list text are showing Release 3.0.

https://testdev-100.azurewebsites.net/
https://testdev-100.azurewebsites.net/

Azure DevOps: Complete CI/CD Pipeline

Page | 79

Now, let’s move on to the QA environment and open TestQA-100 app service using the URL

https://testqa-100.azurewebsites.net. And we will see that nothing has deployed yet on QA

environment. And it’s showing the default page for Azure App Service.

We will also be informed via email that approval is pending for QA deployment.

https://testqa-100.azurewebsites.net/

Azure DevOps: Complete CI/CD Pipeline

Page | 80

Now, the current user (Mukesh Kumar) needs to approve the pending approval for QA environment.

When we click on the Approve button from the QA stage, it will open the dialog where we can put some

comment before approving it. So, put the comment as ‘Deploy Home Page 3.0 to QA’ and click the

Approve button.

Continous Deployment has initiated and will start deploying the Artifact (Build) on the QA (TestQA-

100) environment.

Azure DevOps: Complete CI/CD Pipeline

Page | 81

After a few minutes, the deployment will be finished on QA and we can see the succeeded message on

the QA stage.

Now, once more let’s open the QA (TestQA-100 App Service) URL as

https://testqa- 100.azurewebsites.net. And here we go, we have successfully deployed the QA of

release 3.0.

https://testqa-100.azurewebsites.net/
https://testqa-100.azurewebsites.net/

Azure DevOps: Complete CI/CD Pipeline

Page | 82

So far, so good. We have seen how to commit the code into the GitHub repository, build the code in

Build pipeline, execute the unit test cases in Build pipeline, and deploy on the DEV and QA environment.

8.3 Create Prod Stage

Now, it’s time to add one more stage as PROD. So, open the Pipeline > Release > Test100-Release.

From here just click on Edit button for editing the Azure DevOps Release Pipeline.

Follow the same steps which we have already followed while adding the QA stage. So, just mouse hover

as below over QA stage and click on (+ Add) icon for adding the new stage.

As always, it will ask you to select the template. So, select the template as ‘Azure App Service

Deployment’ and click on Apply. After applying the template just close this dialog window.

Azure DevOps: Complete CI/CD Pipeline

Page | 83

Now, we can see that just after the QA stage, one more stage has been added as ‘Stage 1’. Just click on it

and it will open the stage name dialog popup. From here we can change the name of the stage. So, just

add the name as ‘PROD’. And close the Stage dialog popup using the close icon (X) at the right top corner.

Here with the following image, we can clearly see that we now have 3 different environments for DEV,

QA and PROD respectively. But configuration is pending for the PROD (TestPROD-100) environment.

So, let’s complete it first. Click on the (1 Job, 1 Task).

Azure DevOps: Complete CI/CD Pipeline

Page | 84

Go to the Tasks tab, Provide the Azure Subscription and app type as we have done previously. But be

careful while selecting the App Service Name. This time, we will choose the TestPRDO-100 as an App

Service name.

We don’t have to do anything for variable, retention, options and history. Keep all tabs with default

values and click on SAVE.

So, we have all 3 environments ready as follows. We are configuring any approval for PROD deployment.

After QA deployment, PROD will start deploying.

Azure DevOps: Complete CI/CD Pipeline

Page | 85

Let’s move to Visual Studio 2017 or higher version and make again changes in Index.cshtml file.

This time we will only change the version number from ‘3.0’ to ‘4.0’. The rest of the code will be the

same.

Azure DevOps: Complete CI/CD Pipeline

Page | 86

After making the changes in Index.cshtm as above, check in the code. First provide a valuable comment

so that it can be tracked and Commit All and Sync.

After successfully checking in the code, move to build pipeline (TechHubOrg > DevOpsDemo >

Pipeline > Builds). Here we can see that a new build has initiated as ‘Home Page Release 4.0’.

Open the new build ‘Home Page Release 4.0’ as follows. Here it will perform all jobs before completing

the Build.

Azure DevOps: Complete CI/CD Pipeline

Page | 87

Wait for completing the build and within a few minutes we will see that it has completed as follows.

Azure DevOps: Complete CI/CD Pipeline

Page | 88

Let’s move to Release Pipeline for this (TechHubOrg > DevOpsDemo > Pipeline > Releases >

Test100- Release). Here we will find a new release has initiated as Release 2 and Continuous

Deployment has started on DEV.

Open the Release-2 and we will find that Continuous Deployment is in progress on the DEV

environment. Wait for it to complete.

After a few minutes, it will complete the deployment on DEV and move to QA. But as we have configured

that, approval is required before deployment on QA. It will ask for Approval.

Azure DevOps: Complete CI/CD Pipeline

Page | 89

Before approving for QA, check what changes has deployed on DEV (TestDEV-100 App Service). So,

open the URL for DEV server as https://testdev-100.azurewebsites.net and here we go. Good,

we have deployed Release 4.0 to the DEV server successfully.

Now, it’s time to approve the pending approval for QA. So, click on Approve. It will ask for comment.

Provide a comment like ‘Deploy 4.0 to QA’ and click the Approve button.

https://testdev-100.azurewebsites.net/

Azure DevOps: Complete CI/CD Pipeline

Page | 90

As we have approved it, it will start the deployment on the QA server, as we can see with following

image. Continuous Deployment on QA is in progress.

After a few minutes, it will complete the Continuous Deployment on QA.

Azure DevOps: Complete CI/CD Pipeline

Page | 91

Open the QA environment (TestQA-100 App Service) URL https://testqa-100.azurewebsites.net

in the browser. Great, Release 4.0 is also deployed on QA.

As we didn’t configure any approval before PROD deployment, after deployment on QA, it will auto

deploy on PROD. So, Release 4.0 has deployed to DEV, QA and PROD as well.

https://testqa-100.azurewebsites.net/
https://testqa-100.azurewebsites.net/

Azure DevOps: Complete CI/CD Pipeline

Page | 92

Open the PROD server and see whether release 4.0 has deployed or not. Open the PROD environment

URL as https://testprod-100.azurewebsites.net. Great, we have deployed release 4.0 on PROD

as well.

https://testprod-100.azurewebsites.net/

Azure DevOps: Complete CI/CD Pipeline

Page | 93

Chapter 9.Add Slot

Go to https://portal.azure.com and All Resources page. Here we can see listed all the available

resources which we had created so far. Here we would like to add one more stage between QA and

PROD. Actually, the reason for using the Staging environment is that we don’t want to directly publish

the changes from QA to PROD. First we will verify the changes and functionality and if everything is

working as expected then we will move the changes on PROD using SWAP.

Slots allow you to deploy your application to a separate live app service, warm it up and make

sure it’s ready for use in production, and then swap the slots to provide seamless traffic

redirection. You can slot swap manually (in the portal or command line) or you can

automate the slot swap with Auto-swap or in a script.

SWAP is basically a feature of Azure DevOps where we use two different environments for deployment,

where one is slot. Using SWAP, we can swap the production environment with some staging (slot)

environment with 0 downtimes. So, it is a very great feature for PROD deployment.

As we are going to create one more staging environment just before PROD, open the PROD app service

from the All Resources page.

Once we open the PROD (TestPROD-100) environment, here we can see all configuration related to this

App Service. Apart from this, we have an option to create Slot in the Deployment section as

‘Deployment Slots’. Using the Deployment Slots option, we can create a new slot (staging

environment). So, click on the Deployment Slots.

https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/app-service/web-sites-staged-publishing#Auto-Swap

Azure DevOps: Complete CI/CD Pipeline

Page | 94

The next page is the deployment slots page. Here we can see that the PROD environment is running

with 100% traffic. It means all the traffics which is going to access the PROD environment will hit the

TestPROD-100 App Service.

At the top, we have one button as ‘Add Slot’. For adding a new slot, just click on ‘Add Slot’.

A dialog window will open in the right side and ask for the name of the new slot. Here we will give the

name as ‘Staging’ and use the TestPROD-100 for the clone setting. It means, a new Staging

environment will be created to clone the PROD environment. Click the Add button for adding a new

Slot.

Azure DevOps: Complete CI/CD Pipeline

Page | 95

It will take a few minutes to create the new Staging environment.

Once it is done, it will show a Success message as follows. Just close this dialog window.

Azure DevOps: Complete CI/CD Pipeline

Page | 96

Now, we have one Staging environment for TestPROD-100 as TestPROD-100(Staging). It is also running

but right now, there is no any traffic on this.

Click on the name of the staging environment, TestPROD-100(Staging). It will open the configuration

page for this Staging environment. Here we can see the URL for the staging environment which will be

used to access it. We have several options for this Staging environment like STOP, SWAP, RESTART,

DELETE etc.

Azure DevOps: Complete CI/CD Pipeline

Page | 97

The staging environment is available now. Let’s configure it in the Release pipeline. So, open

https://dev.azure.com/TechHubOrg/DevOpsDemo and release pipeline as Test100-Release and Edit it.

Once Test100-Release opens in Edit mode, just click on PROD stage. Actually we will configure the

Staging environment with PROD. If any new build artifact will be available and is going to deploy on

PROD after QA then it will first deploy on the Staging environment. Later the user can use the SWAP

functionality to SWAP the production environment with the staging environment.

https://dev.azure.com/TechHubOrg/DevOpsDemo

Azure DevOps: Complete CI/CD Pipeline

Page | 98

In the PROD stage, go to the Tasks tab and it will open a dialog window in the right. Here check the

option for ‘Deploy to Slot or App Service Environment’ and select the Resource Group name as

‘TestPROD-100’. The next option is to choose the Slot. So, in the Slot dropdown, we have to select the

‘Staging’.

So far, so good, we have finished implementing the slotting in the PROD environment. We don’t need

to change any other options for now. So, now just click on the SAVE button to save the Release pipeline.

Azure DevOps: Complete CI/CD Pipeline

Page | 99

Now we are finished adding the Slotting functionality with RPDO environment. So, let’s make the

changes in the code and check in the code. When we check in the code, what should happen? First, it

should make the build artifact in Build Cycle and deploy the artifact on the DEV server in the Release

cycle and after approval, it should deploy on QA and then deploy to the Staging environment. It should

not deploy anything on PROD. We will deploy on the PROD using the SWAP feature.

Azure DevOps: Complete CI/CD Pipeline

Page |
100

Chapter 10.Run and Test Azure DevOps

Pipeline

So, open the Visual Studio 2017 or higher version one more time and open the Index.cshtm. Here

we will only change the version number in the page title and post title. So, change the version number

from 4.0 to 5.0.

Save the changes and go to Team Explorer and check in the code as we have done previously. Once

the code checks in then wait for the completion of Azure DevOps Build pipeline. After creating the

build artifact, it will auto deploy on the DEV and ask for approval before deploying on the QA. Approve

and it will deploy QA and Staging (PROD).

Azure DevOps: Complete CI/CD Pipeline

Page |
101

Let check first how DEV (TestDEV-100) is working. Here we can see that our latest changes have

deployed on the DEV environment as follows. [Latest Release is 5.0].

Open the QA environment (TestQA-100) using URL https://testqa-100.azurewebsites.net and

here we can see that the latest build artifact has deployed successfully on the QA environment as

well.

https://testqa-100.azurewebsites.net/

Azure DevOps: Complete CI/CD Pipeline

Page |
102

Now, it’s time to check if the changes have deployed on PROD or not. It should not be deployed because

we have already configured one stage between QA and PROD. The deployment should happen on the

Staging environment after QA. So, open the PROD (TestPROD-100) environment using the URL

https://testprod-100.azurewebsites.net and here we go.

Good, our PROD environment has not deployed the latest changes yet.

https://testprod-100.azurewebsites.net/

Azure DevOps: Complete CI/CD Pipeline

Page | 100

Check the Staging environment using the URL https://testprod-100-staging.azurewebsites.net in the

browser and here we go. Yes, the latest changes have deployed on the Staging environment.

It means, our Release deployment has proceeded in this way: DEV > QA (After Approval) > Staging >

PROD (Not Yet Deployed).

As we learned above, we will use the SWAP feature to swap the environment. Here we will swap

between Staging and PROD. After swapping, the Staging environment will become PROD and the

PROD environment will become the Staging environment.

Go to https://portal.azure.com and open the PROD app service (TestPROD-100) from the All

resources in Azure Portal. Now click on the SWAP button at the top just after STOP.

https://testprod-100-staging.azurewebsites.net/
https://portal.azure.com/

Azure DevOps: Complete CI/CD Pipeline

Page | 101

It will open the SWAP dialog window in the right. Here we have to provide the Source environment

and Target environment. As our build artifact has already deployed on the Staging environment, so

Staging will be part of Source and PROD and where we have to deploy will be part of Target.

After defining the Source and Target for SWAPPING, we will just click on the SWAP button.

Azure DevOps: Complete CI/CD Pipeline

Page | 102

It will take a few minutes to swap between Staging and PROD.

Azure DevOps: Complete CI/CD Pipeline

Page | 103

Once swapping is complete, it will give us a proper success message for confirmation.

Azure DevOps: Complete CI/CD Pipeline

Page | 104

So, open the PROD (TestPROD-100) environment and see the changes. Good, we have got the latest

changes on the PROD environment as Release 5.0.

Let’s move on and check the Staging environment. We will find that earlier PROD changes have

deployed on the Staging environment. It means, what used to be Staging has become the

PROD and what used to be PROD has become the Staging.

Azure DevOps: Complete CI/CD Pipeline

Page | 105

Summary

DevOps is one of the fastest growing areas for tech jobs. Continuous Integration (CI) and Continuous

Delivery (CD) is one of the important operations of project development and management. Not only

CI/CD helps automate the build, test, and deployment process but also saves ton of manual work.

In this book, we discussed what DevOps and Azure DevOps are, what CI/CD is in Azure DevOps and how

to deploy and manage projects in Github using Azure DevOps.

In DevOps project step chapter, we discussed how to create an ASP.NET Core project, Test project and

add it to Github.

Next, we discussed how to create the organization of the project, followed by setting up continuous

integration.

We discussed how to create an Azyre App Service followed by Continuous Delivery that had three, Dev,

QA, and Prod stages.

In the end, we discussed slots and how to run and test Azure DevOps Pipeline.

So, here we have learned about Azure DevOps and how to implement Continuous Integration and

Continuous Delivery using a live Asp.NET Core application, step by step. I hope that you have enjoyed

this and learned a lot.

://www.c-sharpcorner.com/ebooks/javascript-object-model-ecma-programming-in-sharepoint-2016-and-office_365

Page | 106

Azure DevOps: Complete CI/CD Pipeline

https://www.c-sharpcorner.com/ebooks/javascript-object-model-ecma-programming-in-sharepoint-2016-and-office_365

