
RED HAT®

TRAINING

Comprehensive, hands-on training that solves real world problems

Automation with Ansible
Student Workbook (ROLE)

© 2017 Red Hat, Inc. DO407-A2.3-en-2-20170725

AUTOMATION
WITH ANSIBLE

Automation with Ansible

Ansible 2.3 DO407
Automation with Ansible
Edition 2 20170725 20170725

Authors: Chen Chang, Artur Glogowski, George Hacker, Razique Mahroua,
Adolfo Vazquez, Snehangshu Karmakar

Editor: Steven Bonneville

Copyright © 2017 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to
audience members, are Copyright © 2017 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in
any way, including, but not limited to, photocopy, photograph, magnetic, electronic or other
record, without the prior written permission of Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any
guarantees from Red Hat, Inc. Red Hat, Inc. assumes no liability for damages or legal action
arising from the use or misuse of contents or details contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly
distributed please e-mail training@redhat.com or phone toll-free (USA) +1 (866) 626-2994
or +1 (919) 754-3700.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, Hibernate, Fedora, the
Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and
other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a registered trademark of Silicon Graphics International Corp. or its subsidiaries in
the United States and/or other countries.

The OpenStack® Word Mark and OpenStack Logo are either registered trademarks/service
marks or trademarks/service marks of the OpenStack Foundation, in the United States
and other countries and are used with the OpenStack Foundation's permission. We are not
affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack
community.

All other trademarks are the property of their respective owners.

Portions of this course were adapted from the Ansible Lightbulb project. The material from that
project is available from https://github.com/ansible/lightbulb under the MIT License.

https://github.com/ansible/lightbulb

DO407-A2.3-en-2-20170725 v

Document Conventions ix
Notes and Warnings ... ix

Introduction xi
Automation with Ansible ... xi
Orientation to the Classroom Environment ... xii
Internationalization ... xiv

1. Introducing Ansible 1
Overview of Ansible ... 2
Quiz: Ansible Architecture ... 7
Installing Ansible ... 9
Guided Exercise: Installing Ansible ... 11
Summary ... 13

2. Deploying Ansible 15
Building an Ansible Inventory ... 16
Quiz: Building an Ansible Inventory ... 20
Managing Ansible Configuration Files ... 22
Guided Exercise: Managing Ansible Configuration Files ... 29
Running Ad Hoc Commands ... 33
Guided Exercise: Running Ad Hoc Commands ... 38
Managing Dynamic Inventories ... 42
Guided Exercise: Managing Dynamic Inventories ... 46
Lab: Deploying Ansible ... 49
Summary ... 57

3. Implementing Playbooks 59
Writing and Running Playbooks ... 60
Guided Exercise: Writing and Running Playbooks ... 66
Implementing Multiple Plays ... 70
Guided Exercise: Implementing Multiple Plays ... 78
Lab: Implementing Playbooks ... 85
Summary ... 93

4. Managing Variables and Inclusions 95
Managing Variables ... 96
Guided Exercise: Managing Variables ... 106
Managing Facts ... 111
Guided Exercise: Managing Facts ... 118
Managing Inclusions ... 123
Guided Exercise: Managing Inclusions ... 132
Lab: Managing Variables and Inclusions ... 137
Summary ... 146

5. Implementing Task Control 147
Constructing Flow Control .. 148
Guided Exercise: Constructing Flow Control .. 155
Implementing Handlers ... 159
Guided Exercise: Implementing Handlers ... 162
Implementing Tags ... 167
Guided Exercise: Implementing Tags ... 174
Handling Errors ... 179
Guided Exercise: Handling Errors ... 183

Automation with Ansible

vi DO407-A2.3-en-2-20170725

Lab: Implementing Task Control .. 190
Summary ... 204

6. Implementing Jinja2 Templates 205
Describing Jinja2 Templates ... 206
Quiz: Describing Jinja2 Templates ... 209
Implementing Jinja2 Templates ... 211
Guided Exercise: Implementing Jinja2 Templates ... 213
Lab: Implementing Jinja2 Templates ... 216
Summary ... 221

7. Implementing Roles 223
Describing Role Structure ... 224
Quiz: Describing Role Structure ... 228
Creating Roles ... 230
Guided Exercise: Creating Roles ... 233
Deploying Roles with Ansible Galaxy ... 241
Guided Exercise: Deploying Roles with Ansible Galaxy ... 247
Lab: Implementing Roles ... 252
Summary ... 263

8. Optimizing Ansible 265
Selecting Hosts with Host Patterns ... 266
Guided Exercise: Selecting Hosts with Host Patterns ... 272
Configuring Delegation ... 277
Guided Exercise: Configuring Delegation ... 283
Configuring Parallelism ... 289
Guided Exercise: Configuring Parallelism ... 293
Lab: Optimizing Ansible ... 298
Summary ... 311

9. Implementing Ansible Vault 313
Configuring Ansible Vault .. 314
Guided Exercise: Configuring Ansible Vault .. 317
Executing with Ansible Vault .. 320
Guided Exercise: Executing with Ansible Vault .. 325
Lab: Implementing Ansible Vault .. 329
Summary ... 340

10. Troubleshooting Ansible 341
Troubleshooting Playbooks ... 342
Guided Exercise: Troubleshooting Playbooks ... 345
Troubleshooting Ansible Managed Hosts ... 351
Guided Exercise: Troubleshooting Ansible Managed Hosts ... 354
Lab: Troubleshooting Ansible ... 357
Summary ... 366

11. Implementing Ansible Tower 367
Introduction to Ansible Tower ... 368
Quiz: Introduction to Ansible Tower ... 372
Installing Ansible Tower ... 374
Guided Exercise: Installing Ansible Tower ... 379
Navigating the Ansible Tower Web Interface ... 381
Guided Exercise: Navigating the Ansible Tower Web Interface ... 390

DO407-A2.3-en-2-20170725 vii

Quiz: Implementing Ansible Tower ... 393
Summary ... 395

12. Implementing Ansible in a DevOps Environment 397
Provisioning Vagrant Machines ... 398
Guided Exercise: Provisioning Vagrant Machines ... 404
Deploying Vagrant in a DevOps Environment ... 407
Guided Exercise: Deploying Vagrant in a DevOps Environment ... 412
Lab: Implementing Ansible in a DevOps Environment ... 416
Summary ... 422

13. Comprehensive Review: Automation with Ansible 423
Comprehensive Review ... 424
Lab: Deploying Ansible ... 427
Lab: Creating Playbooks ... 432
Lab: Creating Roles and Using Dynamic Inventory ... 442
Lab: Optimizing Ansible ... 453
Lab: Deploying Ansible Tower and Executing Jobs ... 464

A. Ansible Lightbulb Licensing 471
Ansible Lightbulb License ... 472

viii

DO407-A2.3-en-2-20170725 ix

Document Conventions

Notes and Warnings

Note
"Notes" are tips, shortcuts or alternative approaches to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important
"Important" boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring a box labeled "Important" will not cause data loss, but may cause
irritation and frustration.

Warning
"Warnings" should not be ignored. Ignoring warnings will most likely cause data loss.

References
"References" describe where to find external documentation relevant to a subject.

x

DO407-A2.3-en-2-20170725 xi

Introduction

Automation with Ansible

Automation with Ansible (DO407) is designed for system administrators who intend to use
Ansible for automation, configuration, and management. Students will learn how to install and
configure Ansible. Students will also create and run playbooks to configure systems, and learn to
manage inventories. Students will manage encryption for Ansible with Ansible Vault, and deploy
Ansible Tower and use it to manage systems. Students will use Ansible in a DevOps environment
with Vagrant.

Objectives
• Automate system administration tasks on managed hosts with Ansible.

• Learn how to write Ansible playbooks to standardize task execution.

• Centrally manage playbooks through a web interface with Ansible Tower.

Audience
• System and cloud administrators who need to automate cloud provisioning, configuration

management, application deployment, intra-service orchestration, and other IT needs.

Prerequisites
• Red Hat Certified System Administrator (RHCSA in Red Hat Enterprise Linux) certification or

equivalent experience.

Introduction

xii DO407-A2.3-en-2-20170725

Orientation to the Classroom Environment

Figure 0.2: Classroom environment

In this course, the main computer system used for hands-on learning activities is workstation.
Five other machines are also used by students for these activities: servera, serverb,
serverc, serverd, and tower. All six of these systems are in the lab.example.com DNS
domain.

All student computer systems have a standard user account, student, which has the password
student. The root password on all student systems is redhat.

Classroom Machines

Machine name IP addresses Role

workstation.lab.example.com 172.25.250.254 Graphical workstation
used to run most Ansible
management commands

tower.lab.example.com 172.25.250.9 Host used for Ansible Tower
and Vagrant

servera.lab.example.com 172.25.250.10 Host managed with Ansible

serverb.lab.example.com 172.25.250.11 Host managed with Ansible

serverc.lab.example.com 172.25.250.12 Host managed with Ansible

serverd.lab.example.com 172.25.250.13 Host managed with Ansible

The workstation machine also acts as a router between the network that connects the student
machines and the classroom network. If workstation is down, other student machines will only
be able to access systems on the student network.

Orientation to the Classroom Environment

DO407-A2.3-en-2-20170725 xiii

Several systems in the classroom provide supporting services. Two servers,
content.example.com and materials.example.com, act as sources for software and lab
materials used in hands-on activities. Information on how to use these servers is provided in the
instructions for those activities.

Controlling Your Station

The top of the console describes the state of your machine.

Machine States

State Description

none Your machine has not yet been started. When started, your machine
will boot into a newly initialized state (the desk will have been reset).

starting Your machine is in the process of booting.

running Your machine is running and available (or, when booting, soon will be.)

stopping Your machine is in the process of shutting down.

stopped Your machine is completely shut down. Upon starting, your machine
will boot into the same state as when it was shut down (the disk will
have been preserved).

impaired A network connection to your machine cannot be made. Typically this
state is reached when a student has corrupted networking or firewall
rules. If the condition persists after a machine reset, or is intermittent,
please open a support case.

Depending on the state of your machine, a selection of the following actions will be available.

Machine Actions

Action Description

Start Station Start ("power on") the machine.

Stop Station Stop ("power off") the machine, preserving the contents of its disk.

Reset Station Stop ("power off") the machine, resetting the disk to its initial state.
Caution: Any work generated on the disk will be lost.

Refresh Refresh the page will re-probe the machine state.

Increase Timer Adds 15 minutes to the timer for each click.

The Station Timer

Your Red Online Learning enrollment entitles you to a certain amount of computer time. In order
to help you conserve your time, the machines have an associated timer, which is initialized to 60
minutes when your machine is started.

The timer operates as a "dead man’s switch," which decrements while your machine is running. If
the timer is winding down to 0, you can choose to increase the timer.

Introduction

xiv DO407-A2.3-en-2-20170725

Internationalization

Language support
Red Hat Enterprise Linux 7 officially supports 22 languages: English, Assamese, Bengali, Chinese
(Simplified), Chinese (Traditional), French, German, Gujarati, Hindi, Italian, Japanese, Kannada,
Korean, Malayalam, Marathi, Odia, Portuguese (Brazilian), Punjabi, Russian, Spanish, Tamil, and
Telugu.

Per-user language selection
Users may prefer to use a different language for their desktop environment than the system-
wide default. They may also want to set their account to use a different keyboard layout or input
method.

Language settings

In the GNOME desktop environment, the user may be prompted to set their preferred language
and input method on first login. If not, then the easiest way for an individual user to adjust their
preferred language and input method settings is to use the Region & Language application. Run
the command gnome-control-center region, or from the top bar, select (User) > Settings.
In the window that opens, select Region & Language. The user can click the Language box and
select their preferred language from the list that appears. This will also update the Formats
setting to the default for that language. The next time the user logs in, these changes will take
full effect.

These settings affect the GNOME desktop environment and any applications, including gnome-
terminal, started inside it. However, they do not apply to that account if accessed through an
ssh login from a remote system or a local text console (such as tty2).

Note
A user can make their shell environment use the same LANG setting as their graphical
environment, even when they log in through a text console or over ssh. One way to do
this is to place code similar to the following in the user's ~/.bashrc file. This example
code will set the language used on a text login to match the one currently set for the
user's GNOME desktop environment:

i=$(grep 'Language=' /var/lib/AccountService/users/${USER} \
 | sed 's/Language=//')
if ["$i" != ""]; then
 export LANG=$i
fi

Japanese, Korean, Chinese, or other languages with a non-Latin character set may not
display properly on local text consoles.

Individual commands can be made to use another language by setting the LANG variable on the
command line:

[user@host ~]$ LANG=fr_FR.utf8 date

System-wide default language settings

DO407-A2.3-en-2-20170725 xv

jeu. avril 24 17:55:01 CDT 2014

Subsequent commands will revert to using the system's default language for output. The locale
command can be used to check the current value of LANG and other related environment
variables.

Input method settings

GNOME 3 in Red Hat Enterprise Linux 7 automatically uses the IBus input method selection
system, which makes it easy to change keyboard layouts and input methods quickly.

The Region & Language application can also be used to enable alternative input methods. In the
Region & Language application's window, the Input Sources box shows what input methods are
currently available. By default, English (US) may be the only available method. Highlight English
(US) and click the keyboard icon to see the current keyboard layout.

To add another input method, click the + button at the bottom left of the Input Sources window.
An Add an Input Source window will open. Select your language, and then your preferred input
method or keyboard layout.

Once more than one input method is configured, the user can switch between them quickly by
typing Super+Space (sometimes called Windows+Space). A status indicator will also appear
in the GNOME top bar, which has two functions: It indicates which input method is active, and
acts as a menu that can be used to switch between input methods or select advanced features of
more complex input methods.

Some of the methods are marked with gears, which indicate that those methods have advanced
configuration options and capabilities. For example, the Japanese Japanese (Kana Kanji) input
method allows the user to pre-edit text in Latin and use Down Arrow and Up Arrow keys to
select the correct characters to use.

US English speakers may find also this useful. For example, under English (United States) is the
keyboard layout English (international AltGr dead keys), which treats AltGr (or the right Alt)
on a PC 104/105-key keyboard as a "secondary-shift" modifier key and dead key activation key
for typing additional characters. There are also Dvorak and other alternative layouts available.

Note
Any Unicode character can be entered in the GNOME desktop environment if the user
knows the character's Unicode code point, by typing Ctrl+Shift+U, followed by the
code point. After Ctrl+Shift+U has been typed, an underlined u will be displayed to
indicate that the system is waiting for Unicode code point entry.

For example, the lowercase Greek letter lambda has the code point U+03BB, and can be
entered by typing Ctrl+Shift+U, then 03bb, then Enter.

System-wide default language settings
The system's default language is set to US English, using the UTF-8 encoding of Unicode as its
character set (en_US.utf8), but this can be changed during or after installation.

From the command line, root can change the system-wide locale settings with the localectl
command. If localectl is run with no arguments, it will display the current system-wide locale
settings.

Introduction

xvi DO407-A2.3-en-2-20170725

To set the system-wide language, run the command localectl set-locale LANG=locale,
where locale is the appropriate $LANG from the "Language Codes Reference" table in this
chapter. The change will take effect for users on their next login, and is stored in /etc/
locale.conf.

[root@host ~]# localectl set-locale LANG=fr_FR.utf8

In GNOME, an administrative user can change this setting from Region & Language and clicking
the Login Screen button at the upper-right corner of the window. Changing the Language of
the login screen will also adjust the system-wide default language setting stored in the /etc/
locale.conf configuration file.

Important
Local text consoles such as tty2 are more limited in the fonts that they can display
than gnome-terminal and ssh sessions. For example, Japanese, Korean, and Chinese
characters may not display as expected on a local text console. For this reason, it may
make sense to use English or another language with a Latin character set for the
system's text console.

Likewise, local text consoles are more limited in the input methods they support, and
this is managed separately from the graphical desktop environment. The available
global input settings can be configured through localectl for both local text virtual
consoles and the X11 graphical environment. See the localectl(1), kbd(4), and
vconsole.conf(5) man pages for more information.

Language packs
When using non-English languages, you may want to install additional "language packs" to
provide additional translations, dictionaries, and so forth. To view the list of available langpacks,
run yum langavailable. To view the list of langpacks currently installed on the system,
run yum langlist. To add an additional langpack to the system, run yum langinstall
code, where code is the code in square brackets after the language name in the output of yum
langavailable.

References
locale(7), localectl(1), kbd(4), locale.conf(5), vconsole.conf(5),
unicode(7), utf-8(7), and yum-langpacks(8) man pages

Conversions between the names of the graphical desktop environment's X11 layouts and
their names in localectl can be found in the file /usr/share/X11/xkb/rules/
base.lst.

Language Codes Reference

DO407-A2.3-en-2-20170725 xvii

Language Codes Reference

Language Codes

Language $LANG value

English (US) en_US.utf8

Assamese as_IN.utf8

Bengali bn_IN.utf8

Chinese (Simplified) zh_CN.utf8

Chinese (Traditional) zh_TW.utf8

French fr_FR.utf8

German de_DE.utf8

Gujarati gu_IN.utf8

Hindi hi_IN.utf8

Italian it_IT.utf8

Japanese ja_JP.utf8

Kannada kn_IN.utf8

Korean ko_KR.utf8

Malayalam ml_IN.utf8

Marathi mr_IN.utf8

Odia or_IN.utf8

Portuguese (Brazilian) pt_BR.utf8

Punjabi pa_IN.utf8

Russian ru_RU.utf8

Spanish es_ES.utf8

Tamil ta_IN.utf8

Telugu te_IN.utf8

xviii

DO407-A2.3-en-2-20170725 1

TRAINING

CHAPTER 1

INTRODUCING ANSIBLE

Overview

Goal Describe the terminology and architecture of Ansible.

Objectives • Describe Ansible concepts, reference architecture, and use
cases.

• Install Ansible.

Sections • Overview of Ansible (and Quiz)

• Installing Ansible (and Guided Exercise)

Chapter 1. Introducing Ansible

2 DO407-A2.3-en-2-20170725

Overview of Ansible

Objective
After completing this section, students should be able to describe Ansible concepts, architecture,
and use cases.

What is Ansible?
Ansible is an open source automation platform. It's a simple automation language that can
perfectly describe an IT application infrastructure in Ansible Playbooks. It's also an automation
engine that runs Ansible Playbooks.

Ansible can manage powerful automation tasks, and can adapt to many different workflows
and environments. At the same time, new users of Ansible can very quickly use it to become
productive.

Ansible Is Simple

Ansible Playbooks provide human-readable automation. This means that your playbooks are
automation tools that are also easy for humans to read, comprehend, and change. No special
coding skills are required to write them. Playbooks execute tasks in order. The simplicity of
playbook design makes them usable by every team. This allows people new to Ansible to get
productive quickly.

Ansible Is Powerful

You can use Ansible to deploy applications, for configuration management, for workflow
automation, and for network automation. Ansible can be used to orchestrate the entire
application life cycle.

Ansible Is Agentless

Ansible is built around an agentless architecture. Typically, Ansible connects to the hosts it
manages using OpenSSH or WinRM and runs tasks, often (but not always) by pushing out small
programs called Ansible modules to those hosts. These programs are used to put the system in a
specific desired state. Any modules pushed are removed when Ansible is finished with its tasks.
It is possible to start using Ansible almost immediately, because no special agents need to be
approved for use and then deployed to the managed hosts. Because there are no agents and no
additional custom security infrastructure, Ansible is more efficient and more secure than other
alternatives.

Ansible has a number of important strengths:

• Cross platform support: Ansible provides agentless support for Linux, Windows, UNIX, and
network devices, in physical, virtual, cloud, and container environments.

• Human-readable automation: Ansible Playbooks, written as YAML text files, are easy to read
and help ensure that everyone understands what they will do

• Perfect description of applications: Every change can be made by Ansible Playbooks, and every
aspect of your application environment can be described and documented.

• Easy to manage in version control: Ansible Playbooks and projects are plain text. They can be
treated like source code and placed in your existing version control system.

Ansible: The Language of DevOps

DO407-A2.3-en-2-20170725 3

• Support for dynamic inventories: The list of machines that Ansible manages can be dynamically
updated from external sources in order to capture the correct, current list of all managed
servers all the time, regardless of infrastructure or location.

• Orchestration that integrates easily with other systems: HP SA, Puppet, Jenkins, Red Hat
Satellite, and other systems that exist in your environment can be leveraged and integrated
into your Ansible workflow.

Ansible: The Language of DevOps

Figure 1.1: Ansible across the application life cycle

Communication is the key to DevOps.

Ansible is the first automation language that can be read and written across IT. It is also the only
automation engine that can automate the application life cycle and continuous delivery pipeline
from start to finish.

Ansible Concepts and Architecture
There are two types of machines in the Ansible architecture: the control nodes and managed
hosts. Ansible is installed and run from a control node, and this machine also has copies of your
Ansible project files. A control node could be an administrator's laptop, a system shared by a
number of administrators, or a server running Ansible Tower.

Managed hosts are listed in an inventory, which also organizes those systems into groups for
easier collective management. The inventory can be defined in a static text file, or dynamically
determined by scripts that get information from external sources.

Instead of writing complex scripts, Ansible users create high-level plays to ensure a host or group
of hosts are in a particular state. A play performs a series of tasks on the host or hosts, in the
order specified by the play. These plays are expressed in YAML format in a text file. A file that
contains one or more plays is called a playbook.

Each task runs a module, a small piece of code (written in Python, PowerShell, or some other
language), with specific arguments. Each module is essentially a tool in your toolkit. Ansible ships
with hundreds of useful modules that can perform a wide variety of automation tasks. They can
act on system files, install software, or make API calls.

When used in a task, a module generally ensures that some particular thing about the machine is
in a particular state. For example, a task using one module may ensure that a file exists and has

Chapter 1. Introducing Ansible

4 DO407-A2.3-en-2-20170725

particular permissions and contents, while a task using a different module may make certain that
a particular file system is mounted. If the system is not in that state, the task should put it in that
state. If the system is already in that state, it should do nothing. If a task fails, Ansible's default
behavior is to abort the rest of the playbook for the hosts that had a failure. Tasks, plays, and
playbooks should be idempotent. This means that you should be able to run a playbook on the
same hosts multiple times safely, and when your systems are in the correct state the playbook
should make no changes when run.

Ansible also uses plug-ins. Plug-ins are code that you can add to Ansible to extend it and adapt it
to new uses and platforms.

The Ansible architecture is agentless. Typically, when an administrator runs an Ansible Playbook
or an ad hoc command, the control node connects to the managed host using SSH (by default)
or WinRM. This means that clients don't need to have an Ansible-specific agent installed on
managed hosts, and don't need to permit special network traffic to some non-standard port.

Ansible Tower by Red Hat is an enterprise framework to help you control, secure, and manage
your Ansible automation at scale. You can use it to control who has access to run playbooks
on which hosts, share use of SSH credentials without allowing users to transfer or see their
contents, log all of your Ansible jobs, and manage inventory, among many other things. It
provides a web-based user interface and a RESTful API. It's not a core part of Ansible, but a
separate product that helps you use Ansible more effectively with a team or at a large scale.
We'll take a closer look at Ansible Tower later in this course.

Figure 1.2: Ansible architecture

The Ansible Way

DO407-A2.3-en-2-20170725 5

The Ansible Way

Complexity Kills Productivity

Simpler is better. Ansible is designed so that its tools are simple to use and automation is simple
to write and read. You should take advantage of this to strive for simplification in how you create
your automation.

Optimize For Readability

The Ansible automation language is built around simple, declarative, text-based files that
are easy for humans to read. Written properly, Ansible Playbooks can clearly document your
workflow automation.

Think Declaratively

Ansible is a desired-state engine. It approaches the problem of how to automate IT deployments
by expressing them in terms of the state that you want your systems to be in. Ansible's goal is to
put your systems into the desired state, only making changes that are necessary. Trying to treat
Ansible like a scripting language is not the right approach.

Figure 1.3: Ansible provides complete automation

Use Cases
Unlike some other tools, Ansible combines and unites orchestration with configuration
management, provisioning, and application deployment in one easy-to-use platform.

Some use cases for Ansible include:

Chapter 1. Introducing Ansible

6 DO407-A2.3-en-2-20170725

Configuration Management

Centralizing configuration file management and deployment is a common use case for Ansible,
and it's how many power users are first introduced to the Ansible automation platform.

Application Deployment

When you define your application with Ansible, and manage the deployment with Ansible Tower,
teams can effectively manage the entire application life cycle from development to production.

Provisioning

Applications have to be deployed or installed on systems. Ansible and Ansible Tower can help
streamline the process of provisioning systems, whether you're PXE booting and kickstarting
bare-metal servers or virtual machines, or creating virtual machines or cloud instances from
templates.

Continuous Delivery

Creating a CI/CD pipeline requires coordination and buy-in from numerous teams. You can't do
it without a simple automation platform that everyone in your organization can use. Ansible
Playbooks keep your applications properly deployed (and managed) throughout their entire life
cycle.

Security and Compliance

When your security policy is defined in Ansible, scanning and remediation of site-wide security
policies can be integrated into other automated processes. Instead of being an afterthought, it is
an integral part of everything that is deployed.

Orchestration

Configurations alone don't define your environment. You need to define how multiple
configurations interact, and ensure the disparate pieces can be managed as a whole.

References
Ansible
https://www.ansible.com

How Ansible Works
https://www.ansible.com/how-ansible-works

https://www.ansible.com
https://www.ansible.com/how-ansible-works

Quiz: Ansible Architecture

DO407-A2.3-en-2-20170725 7

Quiz: Ansible Architecture

Choose the correct answer to the following questions:

1. Which of the following terms best describes the Ansible architecture?

a. Agentless
b. Client/Server
c. Event-driven
d. Stateless

2. Which network protocol does Ansible use, by default, to communicate with managed nodes?

a. HTTP
b. HTTPS
c. SNMP
d. SSH

3. Which of the following files define the actions Ansible performs on managed nodes?

a. Host inventory
b. Manifest
c. Playbook
d. Script

4. What syntax is used to define Ansible playbooks?

a. Bash
b. Perl
c. Python
d. YAML

Chapter 1. Introducing Ansible

8 DO407-A2.3-en-2-20170725

Solution

Choose the correct answer to the following questions:

1. Which of the following terms best describes the Ansible architecture?

a. Agentless
b. Client/Server
c. Event-driven
d. Stateless

2. Which network protocol does Ansible use, by default, to communicate with managed nodes?

a. HTTP
b. HTTPS
c. SNMP
d. SSH

3. Which of the following files define the actions Ansible performs on managed nodes?

a. Host inventory
b. Manifest
c. Playbook
d. Script

4. What syntax is used to define Ansible playbooks?

a. Bash
b. Perl
c. Python
d. YAML

Installing Ansible

DO407-A2.3-en-2-20170725 9

Installing Ansible

Objectives
After completing this section, students should be able to:

• Install Ansible on the control node.

• Describe connection methods that are used to connect to managed hosts.

Control Nodes
Ansible is simple to install. The Ansible software only needs to be installed on the control
node (or nodes) from which Ansible will be run. Hosts that are managed by Ansible do not
need to have Ansible installed. This installation involves relatively few steps and has minimal
requirements.

The control node should be a Linux or UNIX system. Microsoft Windows is not supported as a
control node, although Windows systems can be managed hosts.

Python 2 (version 2.6 or later) needs to be installed on the control node. (Use of Python 3 with
Ansible is still in technology preview and should not be used in production.) To see whether the
appropriate version of Python is installed on a Red Hat Enterprise Linux system, use the yum
command.

[root@controlnode ~]# yum list installed python
Loaded plugins: langpacks, search-disabled-repos
Installed Packages
python.x86_64 2.7.5-48.el7 installed

Official instructions on how to obtain, install, and get updates for Ansible for Red Hat
Enterprise Linux, as well as for other operating systems and Linux distributions, are available on
the Ansible website at https://www.ansible.com/get-started. This course is based on Ansible 2.3.

Ansible control nodes need to communicate with managed hosts over the network. By default,
SSH is used, but other protocols might be needed if network devices or Microsoft Windows
systems are being managed. On Red Hat Enterprise Linux control nodes, if you are managing
Microsoft Windows systems, you also need to have version 0.2.2 or later of the python2-winrm
RPM package installed (which provides the pywinrm Python package).

Managed Hosts
One of the benefits of Ansible is that managed hosts do not need to have a special agent
installed. The Ansible control node connects to managed hosts using a standard network
protocol to ensure that the systems are in the specified state.

Managed hosts might have some requirements depending on how the control node connects to
them and what modules it will run on them.

Linux and UNIX managed hosts need to have Python 2 (version 2.4 or later) installed for most
modules to work. For Red Hat Enterprise Linux, install the python package. If the version of
Python installed on the managed host is earlier than Python 2.5, then the python-simplejson
package must also be installed.

https://www.ansible.com/get-started

Chapter 1. Introducing Ansible

10 DO407-A2.3-en-2-20170725

If SELinux is enabled on the managed hosts, you also need to install the libselinux-python
package before using modules that are related to any copy, file, or template functions. (Note
that if the other Python components are installed, you can use Ansible modules such as yum or
package to ensure that this package is also installed.)

Some modules might have their own additional requirements. For example, the dnf module,
which can be used to install packages on current Fedora systems, requires the python-dnf
package.

Note
Some modules don't need Python at all. For example, arguments passed to the Ansible
raw module are run directly through the configured remote shell instead of going
through the module subsystem. This can be useful for managing devices that don't
have Python available or can't have Python installed, or for bootstrapping Python onto
a system that doesn't have it.

However, the raw module is difficult to use in a safely idempotent way. So if you can
use a normal module instead, it's generally better to avoid using raw and the other
command modules like it. We'll talk more about this later in the course.

Microsoft Windows-based Managed Hosts

Ansible includes a number of modules that are specifically designed for Microsoft Windows
systems. These are listed in the Windows Modules [https://docs.ansible.com/ansible/
list_of_windows_modules.html] section of the Ansible module index.

Most of the modules specifically designed for Microsoft Windows managed hosts require
PowerShell 3.0 or higher on the managed host rather than Python. In addition, the managed
hosts need to have PowerShell remoting configured.

This course uses Linux-based managed hosts in its examples, and does not go into great depth
on the specific differences and adjustments needed when managing Microsoft Windows-based
managed hosts. If you're interested, more information is available on the Ansible web site at
https://docs.ansible.com/ansible/intro_windows.html.

References
ansible(1) man page

Installation — Ansible Documentation
http://docs.ansible.com/ansible/intro_installation.html

Windows Support
http://docs.ansible.com/ansible/intro_windows.html

Networking Support
http://docs.ansible.com/ansible/intro_networking.html

https://docs.ansible.com/ansible/list_of_windows_modules.html
https://docs.ansible.com/ansible/list_of_windows_modules.html
https://docs.ansible.com/ansible/list_of_windows_modules.html
https://docs.ansible.com/ansible/intro_windows.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_windows.html
http://docs.ansible.com/ansible/intro_networking.html

Guided Exercise: Installing Ansible

DO407-A2.3-en-2-20170725 11

Guided Exercise: Installing Ansible

In this exercise, you will install Ansible on a control node and configure it for connections to a
managed host.

Outcome

You should be able to install Ansible on a control node.

Before you begin

Log in as the student user on workstation and run lab install setup. This setup script
ensures that the managed host, servera, is reachable on the network.

[student@workstation ~]$ lab install setup

Steps

1. Verify that Python 2 is installed on workstation.

[student@workstation ~]$ yum list installed python

2. Install Ansible on workstation so that it can be used as a control node.

[student@workstation ~]$ sudo yum install -y ansible

3. Prepare to test the Ansible installation. Create a new directory, /home/student/
dep-install. In that directory, create an Ansible inventory file named inventory.
Follow the instructions below to edit that file so that it lists the managed host
servera.lab.example.com as a member of the host group dev. (The exercise will show
you how to do this for now, but the course will cover how static inventory files work in the
next chapter.)

3.1. Create and change directory to the /home/student/dep-install directory.

[student@workstation ~]$ mkdir /home/student/dep-install
[student@workstation ~]$ cd /home/student/dep-install

3.2. Use a text editor to create /home/student/dep-install/inventory, containing
the following lines:

[dev]
servera.lab.example.com

4. In the /home/student/dep-install directory, run the following ansible command
to list all the managed hosts that are part of the dev group in the /home/student/dep-
install/inventory inventory file:

[student@workstation dep-install]$ ansible dev -i inventory --list-hosts
 hosts (1):

Chapter 1. Introducing Ansible

12 DO407-A2.3-en-2-20170725

 servera.lab.example.com

You should see output similar to the preceding example, which lists
servera.lab.example.com as the only host in the dev group.

5. Run lab install grade on workstation to grade your work.

[student@workstation ~]$ lab install grade

Summary

DO407-A2.3-en-2-20170725 13

Summary

In this chapter, you learned:

• Ansible is an open source automation platform that can adapt to many different workflows and
environments.

• Ansible can be used to manage many different types of systems, including servers running
Linux, Microsoft Windows, or UNIX, and network devices.

• Ansible Playbooks are human-readable text files that describe the desired state of an IT
infrastructure.

• Ansible is built around an agentless architecture in which Ansible is installed on a control node
and clients do not need any special agent software.

• Ansible connects to managed hosts using standard network protocols such as SSH, and runs
code or commands on the managed hosts to ensure that they are in the state specified by
Ansible.

14

DO407-A2.3-en-2-20170725 15

TRAINING

CHAPTER 2

DEPLOYING ANSIBLE

Overview

Goal Configure Ansible and run ad hoc commands.

Objectives • Describe Ansible inventory concepts and build a static
inventory.

• Manage Ansible configuration files.

• Run Ansible ad hoc commands.

• Manage dynamic inventory.

Sections • Building an Ansible Inventory (and Quiz)

• Managing Ansible Configuration Files (and Guided
Exercise)

• Running Ad Hoc Commands (and Guided Exercise)

• Managing Dynamic Inventory (and Guided Exercise)

Lab • Deploying Ansible

Chapter 2. Deploying Ansible

16 DO407-A2.3-en-2-20170725

Building an Ansible Inventory

Objective
After completing this section, students should be able to describe Ansible inventory concepts
and manage a static inventory.

The Inventory
An inventory defines a collection of hosts that Ansible will manage. These hosts can also be
assigned to groups, which can be managed collectively. Groups can contain child groups, and
hosts can be members of multiple groups. The inventory can also set variables that apply to the
hosts and groups that it defines.

Host inventories can be defined in two different ways. A static host inventory can be defined by
a text file. A dynamic host inventory can be generated by a script or other program as needed,
using external information providers.

Static Inventory
A static inventory file is an INI-like text file that specifies the managed hosts that Ansible targets.
In its simplest form, a static inventory is a list of host names or IP addresses of managed hosts,
each on a single line:

web1.example.com
web2.example.com
db1.example.com
db2.example.com
192.0.2.42

Normally, however, you organize managed hosts into host groups. Host groups allow you to more
effectively run Ansible against a collection of systems. In this case, each section starts with a
host group name enclosed in square brackets ([]). This is followed by the host name or an IP
address for each managed host in the group, each on a single line.

In the following example, the host inventory defines two host groups, webservers and db-
servers.

[webservers]
web1.example.com
web2.example.com
192.0.2.42

[db-servers]
db1.example.com
db2.example.com

Hosts can be in multiple groups. In fact, recommended practice is to organize your hosts into
multiple groups, possibly organized in different ways depending on the role of the host, its
physical location, whether it's in production or not, and so on. This allows you to more easily
apply Ansible plays to specific hosts.

[webservers]

Static Inventory

DO407-A2.3-en-2-20170725 17

web1.example.com
web2.example.com
192.168.3.7

[db-servers]
db1.example.com
db2.example.com

[east-datacenter]
web1.example.com
db1.example.com

[west-datacenter]
web2.example.com
db2.example.com

[production]
web1.example.com
web2.example.com
db1.example.com
db2.example.com

[development]
192.0.2.42

Important
Two host groups always exist:

• The all host group contains every host explicitly listed in the inventory.

• The ungrouped host group contains every host explicitly listed in the inventory that
isn't a member of any other group.

Defining Nested Groups

Ansible host inventories can include groups of host groups. This is accomplished with the
:children suffix. The following example creates a new group called north-america, which
includes all of the hosts from the usa and canada groups.

[usa]
washington1.example.com
washington2.example.com

[canada]
ontario01.example.com
ontario02.example.com

[north-america:children]
canada
usa

A group can have both managed hosts and child groups as members. For example, in the
previous inventory we could add a [north-america] section that has its own list of managed
hosts. That list of hosts would be merged with the additional hosts the north-america group
inherits from its child groups.

Chapter 2. Deploying Ansible

18 DO407-A2.3-en-2-20170725

Simplifying Host Specifications with Ranges

Ansible host inventories can be simplified by specifying ranges in the host names or IP
addresses. Numeric ranges can be specified, but alphabetic ranges are also supported. Ranges
have the following syntax:

[START:END]

Ranges match all the values from START to END, inclusive. Consider the following examples:

• 192.168.[4:7].[0:255] will match all IPv4 addresses in the 192.168.4.0/22 network
(192.168.4.0 through 192.168.7.255).

• server[01:20].example.com will match all hosts named server01.example.com
through server20.example.com.

• [a:c].dns.example.com will match hosts named a.dns.example.com,
b.dns.example.com, and c.dns.example.com.

• 2001:db8::[a:f] will match all IPv6 addresses from 2001:db8::a through 2001:db8::f.

If leading zeros are included in numeric ranges, they are used in the pattern. The second example
above does not match server1.example.com but does match server07.example.com.
To illustrate this, the following example uses ranges to simplify the usa and canada group
definitions from the earlier example:

[usa]
washington[1:2].example.com

[canada]
ontario[01:02].example.com

Testing the Inventory

When in doubt, test the machine's presence in the inventory with the ansible command:

[user@demo ~]$ ansible washington1.example.com --list-hosts
 hosts (1):
 washington1.example.com
[user@demo ~]$ ansible washington01.example.com --list-hosts
 [WARNING]: provided hosts list is empty, only localhost is available

 hosts (0):

You can run the following command to list all hosts in a group:

[user@demo ~]$ ansible canada --list-hosts
 hosts (2):
 ontario01.example.com
 ontario02.example.com

Dynamic Inventory

DO407-A2.3-en-2-20170725 19

Important
If the inventory contains a host and a host group with the same name, the ansible
command prints a warning and targets the host. The host group is ignored.

There are various ways to deal with this situation, the easiest being to ensure that host
groups don't use the same names as hosts in the inventory.

Overriding the Location of the Inventory

The /etc/ansible/hosts file is considered the system's default static inventory file. However,
normal practice is not to use that file but to define a different location for inventory files in your
Ansible configuration file. This is covered in the next section.

The ansible and ansible-playbook commands you'll be using to run Ansible ad hoc
commands and playbooks later in the course can also specify the location of an inventory file
on the command line with the --inventory PATHNAME or -i PATHNAME option, where
PATHNAME is the path to the desired inventory file.

Defining Variables in the Inventory

Values for variables used by playbooks can be specified in host inventory files. These variables
only apply to specific hosts or host groups. Normally it is better to define these inventory
variables in special directories and not directly in the inventory file. This topic is discussed in
more depth elsewhere in the course.

Dynamic Inventory
Ansible inventory information can also be dynamically generated, using information provided
by external databases. The open source community has written a number of dynamic inventory
scripts that are available from the upstream Ansible project. If those scripts don't meet your
needs, you can also write your own.

For example, a dynamic inventory program could contact your Red Hat Satellite server or
Amazon EC2 account, and use information stored there to construct an Ansible inventory.
Since the program does this when Ansible is run, it can populate the inventory with up-to-date
information provided by the service as new hosts are added and old hosts are removed.

This topic is discussed in more detail later in this chapter.

References
Inventory: Ansible Documentation
http://docs.ansible.com/ansible/intro_inventory.html

http://docs.ansible.com/ansible/intro_inventory.html

Chapter 2. Deploying Ansible

20 DO407-A2.3-en-2-20170725

Quiz: Building an Ansible Inventory

Choose the correct answers to the following questions:

1.
[linux-dev]
cchang.example.com
rlocke.example.com

[windows-dev]
wdinyes.example.com

[development:children]
linux-dev
windows-dev

Given the Ansible inventory in the above exhibit, which host group, or groups, includes the
rlocke.example.com host?

a. linux-dev
b. windows-dev
c. development
d. Both linux-dev and development

2. Which of the following expressions can be used in an Ansible inventory file to match hosts in
the 10.1.0.0/16 address range?

a. 10.1.0.0/16
b. 10.1.[0:255].[0:255]
c. 10.1.[0-255].[0-255]
d. 10.1.*

3. In the inventory, a managed host

a. must be in no more than one group other than all
b. may not be in a group that has child groups
c. may be in more than one group other than all
d. can not be listed by an IP address

Solution

DO407-A2.3-en-2-20170725 21

Solution

Choose the correct answers to the following questions:

1.
[linux-dev]
cchang.example.com
rlocke.example.com

[windows-dev]
wdinyes.example.com

[development:children]
linux-dev
windows-dev

Given the Ansible inventory in the above exhibit, which host group, or groups, includes the
rlocke.example.com host?

a. linux-dev
b. windows-dev
c. development
d. Both linux-dev and development

2. Which of the following expressions can be used in an Ansible inventory file to match hosts in
the 10.1.0.0/16 address range?

a. 10.1.0.0/16
b. 10.1.[0:255].[0:255]
c. 10.1.[0-255].[0-255]
d. 10.1.*

3. In the inventory, a managed host

a. must be in no more than one group other than all
b. may not be in a group that has child groups
c. may be in more than one group other than all
d. can not be listed by an IP address

Chapter 2. Deploying Ansible

22 DO407-A2.3-en-2-20170725

Managing Ansible Configuration Files

Objectives
After completing this section, students should be able to:

• Describe Ansible configuration file locations.

• Describe Ansible configuration file syntax.

• Create Ansible configuration files and apply changes to default settings.

Configuring Ansible
The behavior of an Ansible installation can be customized by modifying settings in the Ansible
configuration file. Ansible chooses its configuration file from one of several possible locations on
the control node.

Using /etc/ansible/ansible.cfg
The ansible package provides a base configuration file located at /etc/ansible/
ansible.cfg. This file is used if no other configuration file is found.

Using ~/.ansible.cfg
Ansible looks for a ~/.ansible.cfg in the user's home directory. This configuration is used
instead of the /etc/ansible/ansible.cfg if it exists and if there is no ansible.cfg file in
the current working directory.

Using ./ansible.cfg
If an ansible.cfg file exists in the directory in which the ansible command is executed, it is
used instead of the global file or the user's personal file. This allows administrators to create a
directory structure where different environments or projects are stored in separate directories,
with each directory containing a configuration file tailored with a unique set of settings.

Important
The recommended practice is to create an ansible.cfg file in a directory from which
you run Ansible commands. This directory would also contain any files used by your
Ansible project, such as an inventory and a playbook. This is the most common location
used for the Ansible configuration file. It is unusual to use a ~/.ansible.cfg or /
etc/ansible/ansible.cfg file in practice.

Using $ANSIBLE_CONFIG
You can use different configuration files by placing them in different directories and then
executing Ansible commands from the appropriate directory, but this method can be restrictive
and hard to manage as the number of configuration files grows. A more flexible option is to
define the location of the configuration file with the $ANSIBLE_CONFIG environment variable.
When this variable is defined, Ansible uses the configuration file that the variable specifies
instead of any of the previously mentioned configuration files.

Configuration File Precedence

DO407-A2.3-en-2-20170725 23

Configuration File Precedence
The search order for a configuration file is the reverse of the preceding list. The first file located
in the search order is the one from which Ansible will use configuration settings. Ansible will only
use settings from this configuration file. Even if other files with lower precedence exist, their
settings will be ignored and not combined with those in the selected configuration file.

Any file specified by the $ANSIBLE_CONFIG environment variable will override all other
configuration files. If that variable is not set, the directory in which the ansible command was
run is checked for an ansible.cfg file next. If that file is not present, the user's home directory
is checked for a .ansible.cfg file. The global /etc/ansible/ansible.cfg file is only used
if no other configuration file is found.

Therefore, if you choose to create your own configuration file in favor of the global /etc/
ansible/ansible.cfg configuration file, you need to duplicate all desired settings from that
file to your own user-level configuration file. Settings not defined in the user-level configuration
file remain set to the built-in defaults, even if they are set to some other value by the global
configuration file.

Because of the multitude of locations in which Ansible configuration files can be placed, it can be
confusing which configuration file is being used by Ansible, especially when multiple files exist
on the control node. You can run the ansible --version command to clearly identify which
version of Ansible is installed, and which configuration file is being used.

[student@controlnode ~]$ ansible --version
ansible 2.3.1.0
 config file = /etc/ansible/ansible.cfg
...output omitted...

Another way to display the active Ansible configuration file is to use the -v option when
executing Ansible commands on the command line.

[student@controlnode ~]$ ansible servers --list-hosts -v
Using /etc/ansible/ansible.cfg as config file
...output omitted...

Managing Settings in the Configuration File
The Ansible configuration file consists of several sections, with each section containing settings
defined as key-value pairs. Section titles are enclosed in square brackets. Settings are grouped
under the following six sections in the default Ansible configuration file:

[student@controlnode ~]$ grep "^\[" /etc/ansible/ansible.cfg
[defaults]
[privilege_escalation]
[paramiko_connection]
[ssh_connection]
[accelerate]
[selinux]

Most of the settings in the configuration file are grouped under the [defaults] section.
The [privilege_escalation] section contains settings for defining how operations that
require escalated privileges are executed on managed hosts. The [paramiko_connection],
[ssh_connection], and [accelerate] sections contain settings for optimizing connections
to managed hosts. The [selinux] section contains settings for defining how SELinux

Chapter 2. Deploying Ansible

24 DO407-A2.3-en-2-20170725

interactions are configured. Although not included in the default global Ansible configuration file
provided by the ansible package, a [galaxy] section is also available for defining parameters
related to Ansible Galaxy, which is discussed in a later chapter.

Settings are customized by changing their values in the currently active configuration file.
Changes take effect as soon as the file is saved. Some settings are predefined with default values
within Ansible, and these values are valid even if their respective settings are commented out
in the configuration file. To identify the default value of these predefined settings, consult the
comments in the global /etc/ansible/ansible.cfg configuration file supplied by the ansible
package. The ansible man page also provides information on the default values of these
predefined settings.

Configuring Connections
Ansible needs to know how to communicate with its managed hosts. One of the most common
reasons to change the configuration file is in order to control what methods and users Ansible
will use to administer managed hosts. Some of the information needed includes:

• Where the inventory is that lists the managed hosts and host groups

• Which connection protocol to use to communicate with the managed hosts (by default, SSH),
and whether a non-standard network port is needed to connect to the server

• Which remote user to use on the managed hosts; this could be root or it could be an
unprivileged user

• If the remote user is unprivileged, Ansible needs to know whether it should try to escalate
privileges to root and how to do it (for example, by using sudo)

• Whether or not to prompt for an SSH password or sudo password to log in or gain privileges

Inventory Location

In the [defaults] section, the inventory directive can point directly to a static inventory file,
or to a directory that contains multiple static inventory files and/or dynamic inventory scripts:

[defaults]
inventory = ./inventory

Connection Settings

By default, Ansible connects to managed hosts using the SSH protocol. The most important
parameters that control how Ansible connects to the managed hosts are set in the [defaults]
section.

By default, Ansible attempts to connect to the managed host using the same user name as
the local user running the Ansible commands. To specify a different remote user, set the
remote_user parameter to that user name.

If the local user running Ansible has a private SSH key or keys configured that allow them to
authenticate as the remote user on the managed hosts, Ansible automatically logs in. If that's
not the case, you can configure Ansible to prompt the local user for the password used by the
remote user by setting the directive ask_pass = true.

[defaults]
inventory = ./inventory

Configuring Connections

DO407-A2.3-en-2-20170725 25

remote_user = root
ask_pass = true

Assuming that you're using a Linux control node and OpenSSH on your managed hosts, if you
can log in to the remote user with a password then you can probably set up SSH key-based
authentication, which would allow you to set ask_pass = false.

The first step is to make sure that the user on the control node has an SSH key pair configured in
~/.ssh. You can run the ssh-keygen command to accomplish this.

For a single existing managed host, you can install your public key on the managed host and
populate your local ~/.ssh/known_hosts file with its host key using the ssh-copy-id
command:

[student@controlnode ~]$ ssh-copy-id root@web1.example.com
The authenticity of host 'web1.example.com (192.168.122.181)' can't be established.
ECDSA key fingerprint is 70:9c:03:cd:de:ba:2f:11:98:fa:a0:b3:7c:40:86:4b.
Are you sure you want to continue connecting (yes/no)? yes
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any
 that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now
 it is to install the new keys
root@web1.example.com's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'root@web1.example.com'"
and check to make sure that only the key(s) you wanted were added.

Note
You can also use an Ansible Playbook to deploy your public key to the remote_user
account on all managed hosts using the authorized_key module.

This course hasn't covered Ansible Playbooks in detail yet. For your future reference,
a play that ensures that your public key is deployed to the managed hosts' root
accounts might read:

- name: Public key is deployed to managed hosts for Ansible
 hosts: all

 tasks:
 - name: Ensure key is in root's ~/.ssh/authorized_hosts
 authorized_key:
 user: root
 state: present
 key: '{{ item }}'
 with_file:
 - ~/.ssh/id_rsa.pub

Because the managed host wouldn't have SSH key-based authentication configured
yet, you would have to run the playbook using the ansible-playbook command with
the --ask-pass option in order for the command to authenticate as the remote user.

Chapter 2. Deploying Ansible

26 DO407-A2.3-en-2-20170725

Privilege Escalation

For security and auditing reasons, Ansible might need to connect to remote hosts as a non-
privileged user before escalating privileges to get administrative access as root. This can be set
up in the [privilege_escalation] section of the Ansible configuration file.

To enable privilege escalation by default, set the directive become = true in the configuration
file. Even if this is set by default, there are various ways to override it when running ad hoc
commands or Ansible Playbooks. (For example, there might be times when you want to run a task
or play that does not escalate privileges.)

The become_method directive specifies how to escalate privileges. Several options are available,
but the default is to use sudo. Likewise, the become_user directive specifies which user to
escalate to, but the default is root.

If the become_method mechanism chosen requires the user to enter a password to escalate
privileges, you can set the become_ask_pass = true directive in the configuration file.

Note
On Red Hat Enterprise Linux 7, the default configuration of /etc/sudoers grants all
users in the wheel group the ability to use sudo to become root after entering their
password.

One way to enable a user ("someuser" in the following example) to use sudo to
become root without a password is to install a file with the appropriate directives into
the /etc/sudoers.d directory (owned by root, with octal permissions 0400):

password-less sudo for Ansible user
someuser ALL=(ALL) NOPASSWD:ALL

Think through the security implications of whatever approach you choose for privilege
escalation. Different organizations and deployments might have different trade-offs to
consider.

The following example ansible.cfg file assumes that you can connect to the managed hosts
as someuser using SSH key-based authentication, and that someuser can use sudo to run
commands as root without entering a password:

[defaults]
inventory = ./inventory
remote_user = someuser
ask_pass = false

[privilege_escalation]
become = true
become_method = sudo
become_user = root
become_ask_pass = false

The following table summarizes some of the most commonly modified directives in the Ansible
configuration file.

Configuring Connections

DO407-A2.3-en-2-20170725 27

Ansible Settings

Setting Description

inventory The location of the Ansible inventory.

remote_user The remote user account used to establish connections to managed
hosts.

ask_pass Prompt for a password to use when connecting as the remote user.

become Enable or disable privilege escalation for operations on managed
hosts.

become_method The privilege escalation method to use on managed hosts.

become_user The user account to escalate privileges to on managed hosts.

become_ask_pass Defines whether privilege escalation on managed hosts should prompt
for a password.

Non-SSH Connections

The protocol used by Ansible to connect to managed hosts is set by default to smart, which
determines the most efficient way to use SSH. This can be set to other values in a number of
ways.

For example, there is one exception to the rule that SSH is used by default. If you do not have
localhost in your inventory, Ansible sets up an implicit localhost entry to allow you to run
ad hoc commands and playbooks that target localhost. This special inventory entry is not
included in the all or ungrouped host groups. In addition, instead of using the smart SSH
connection type, Ansible connects to it using the special local connection type by default.

[student@controlnode ~]$ ansible localhost --list-hosts
 [WARNING]: provided hosts list is empty, only localhost is available

 hosts (1):
 localhost

The local connection type ignores the remote_user setting and runs commands directly on
the local system. If privilege escalation is being used, it runs sudo from the user account that
ran the Ansible command, not remote_user. This can lead to confusion if the two users have
different sudo privileges.

If you want to make sure that you connect to localhost using SSH like other managed hosts,
one approach is to list it in your inventory. But this will include it in groups all and ungrouped,
which you may not want to do.

Another approach is to change the protocol used to connect to localhost. The best way to
do this is to set the ansible_connection host variable for localhost. To do this, in the
directory from which you run Ansible commands, create a host_vars subdirectory. In that
subdirectory, create a file named localhost that contains the line ansible_connection:
smart. This ensures that the smart (SSH) connection protocol is used instead of local for
localhost.

You can use this the other way around as well. If you have 127.0.0.1 listed in your inventory,
by default you'll connect to it using smart. But you can create a host_vars/127.0.0.1 file
containing the line ansible_connection: local and it will use local instead.

Host variables will be covered in more detail later in the course.

Chapter 2. Deploying Ansible

28 DO407-A2.3-en-2-20170725

Note
You can also use group variables to change the connection type for an entire
host group. This can be done by placing files with the same name as the group in
a group_vars directory, and ensuring that those files contain settings for the
connection variables.

For example, you might want all your Microsoft Windows managed hosts to use the
winrm protocol and port 5986 for connections. To configure this, you could put all of
those managed hosts in group windows, and then create a file named group_vars/
windows containing the following lines:

ansible_connection: winrm
ansible_port: 5986

Configuration File Comments
There are two comment characters allowed by Ansible configuration files: the hash or number
sign (#), and the semicolon (;).

The # character at the start of a line comments out the entire line. It must not be on the same
line with a directive.

The ; character comments out everything to the right of it on the line. It can be on the same line
as a directive, as long as that directive is to its left.

References
ansible(1), ssh-keygen(1), and ssh-copy-id(1) man pages

Configuration file: Ansible Documentation
http://docs.ansible.com/ansible/intro_configuration.html

http://docs.ansible.com/ansible/intro_configuration.html

Guided Exercise: Managing Ansible Configuration Files

DO407-A2.3-en-2-20170725 29

Guided Exercise: Managing Ansible
Configuration Files

In this exercise, you will customize your Ansible environment.

Outcomes

You should be able to create a configuration file to configure your Ansible environment with
persistent custom settings.

Before you begin

Log in as the student user on workstation and run lab manage setup. This setup script
ensures that the managed host, servera, is reachable on the network.

[student@workstation ~]$ lab manage setup

Steps

1. Create the /home/student/dep-manage directory, which will contain the files for this
exercise. Change to this newly created directory.

[student@workstation ~]$ mkdir /home/student/dep-manage
[student@workstation ~]$ cd /home/student/dep-manage

2. In your /home/student/dep-manage directory, use a text editor to start editing a new file,
ansible.cfg.

Create a [defaults] section in that file. In that section, add a line which uses the
inventory directive to specify the ./inventory file as the default inventory.

[defaults]
inventory = ./inventory

Save your work and exit the text editor.

3. In the /home/student/dep-manage directory, use a text editor to start editing the new
static inventory file, inventory.

The static inventory should contain three host groups:

• myself should contain the host localhost

• intranetweb should contain the host servera.lab.example.com

• everyone should contain the myself and intranetweb host groups

3.1. In /home/student/dep-manage/inventory, create the myself host group by
adding the following lines.

[myself]
localhost

Chapter 2. Deploying Ansible

30 DO407-A2.3-en-2-20170725

3.2. In /home/student/dep-manage/inventory, create the intranetweb host group
by adding the following lines.

[intranetweb]
servera.lab.example.com

3.3. In /home/student/dep-manage/inventory, create the everyone host group by
adding the following lines.

[everyone:children]
myself
intranetweb

Note
Remember, you don't need to create a special group to be able to select all
hosts in the inventory. You can just use the all host group. We're doing this
to practice creating groups of groups.

3.4. Confirm that your final inventory file looks like this:

[myself]
localhost

[intranetweb]
servera.lab.example.com

[everyone:children]
myself
intranetweb

Save your work and exit the text editor.

4. Use ansible with the --list-hosts option to test the configuration of your inventory
file's host groups. This will not actually connect to those hosts.

[student@workstation dep-manage]$ ansible myself --list-hosts
 hosts (1):
 localhost
[student@workstation dep-manage]$ ansible intranetweb --list-hosts
 hosts (1):
 servera.lab.example.com
[student@workstation dep-manage]$ ansible everyone --list-hosts
 hosts (2):
 localhost
 servera.lab.example.com

5. Open the /home/student/dep-manage/ansible.cfg file in a text editor again. Add
a [privilege_escalation] section to configure Ansible to automatically use sudo to
switch from student to root when running tasks on the managed hosts. Ansible should
also be configured to prompt you for the password that student uses for sudo.

DO407-A2.3-en-2-20170725 31

5.1. Create the privilege_escalation section in the /home/student/dep-manage/
ansible.cfg configuration file by adding the following entry.

[privilege_escalation]

5.2. Enable privilege escalation by setting the become directive to true.

become = true

5.3. Set the privilege escalation to use sudo by setting the become_method directive to
sudo.

become_method = sudo

5.4. Set the privilege escalation user by setting the become_user directive to root.

become_user = root

5.5. Enable prompting for the privilege escalation password by setting the
become_ask_pass directive to true.

become_ask_pass = true

5.6. Confirm that the complete ansible.cfg file looks like this:

[defaults]
inventory = ./inventory

[privilege_escalation]
become = true
become_method = sudo
become_user = root
become_ask_pass = true

Save your work and exit the text editor.

6. Run the ansible --list-hosts command again to verify that you are now prompted for
the sudo password. Add the -v option to see the location of the current configuration file
being used.

When prompted for the sudo password, enter student. (It won't be used for this dry run,
however.)

[student@workstation dep-manage]$ ansible intranetweb --list-hosts -v
Using /home/student/dep-manage/ansible.cfg as config file
SUDO password: student
 hosts (1):
 servera.lab.example.com

Chapter 2. Deploying Ansible

32 DO407-A2.3-en-2-20170725

7. Confirm that you can run Ansible tasks on the managed hosts. To do this, you will run your
first ad hoc command. Ad hoc commands will be covered in more detail in the next section.

Run an ansible command targeting the everyone group, but replace --list-hosts
with -m ping. That will run the ping module, which confirms that you can successfully run
Ansible modules that use Python on the managed hosts.

This should work, assuming that the student user can log in to the managed hosts using
SSH key-based authentication, and has sudo access on the managed hosts.

[student@workstation dep-manage]$ ansible everyone -m ping
SUDO password: student
localhost | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
servera.lab.example.com | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

Running Ad Hoc Commands

DO407-A2.3-en-2-20170725 33

Running Ad Hoc Commands

Objectives
After completing this section, students should be able to:

• Run ad hoc commands locally.

• Run ad hoc commands remotely.

• Discuss uses for ad hoc commands.

Performing Ad Hoc Commands with Ansible
An ad hoc command is a way to execute a single Ansible task quickly, one that you don't need
to save to run again later. They're simple, one-line operations that can be run without writing a
playbook.

They're useful for quick tests and changes. For example, you can use an ad hoc command to
make sure a certain line exists in the /etc/hosts file on a group of servers. You could use
another to efficiently restart a service on many different machines, or ensure that a particular
software package is up-to-date. You could also use it to run an arbitrary command on one or
more hosts to run a program or collect information.

Ad hoc commands are a very useful tool to quickly perform simple tasks with Ansible. They do
have their limits, and in general you'll want to use Ansible Playbooks to realize the full power
of Ansible. In many situations, however, ad hoc commands are exactly the tool you need to do
something simple quickly.

Running Ad Hoc Commands

Use the ansible command to run ad hoc commands:

ansible host-pattern -m module [-a 'module arguments'] [-i inventory]

The host-pattern argument is used to specify the managed hosts on which the ad hoc command
should be run. It could be a specific managed host or host group in the inventory. You've already
seen this used in conjunction with the --list-hosts option, which shows you which hosts are
matched by a particular host pattern. You've also already seen that you can use the -i option to
specify a different inventory location to use than the default in the current Ansible configuration
file.

The -m option takes as an argument the name of the module Ansible should run on the targeted
hosts. Modules are small programs that are executed to implement your task. Some modules
need no additional information, but others need additional arguments to specify the details of
their operation. The -a option takes a list of those arguments as a quoted string.

One of the simplest ad hoc commands uses the ping module. This module doesn't do an ICMP
ping, but checks to see if Python-based modules can be run on managed hosts. For example,
the following ad hoc command determines whether all managed hosts in the inventory can run
standard modules:

[student@controlnode ~]$ ansible all -m ping
servera.lab.example.com | SUCCESS => {

Chapter 2. Deploying Ansible

34 DO407-A2.3-en-2-20170725

 "changed": false,
 "ping": "pong"
}

Performing Tasks with Modules in Ad Hoc Commands

Modules are the tools that ad hoc commands use to accomplish tasks. Ansible provides hundreds
of modules which do different things. You can usually find a tested, special-purpose module that
does what you need as part of the standard installation.

The ansible-doc -l command lists all the modules that are installed on the system. You can
then use ansible-doc to view the documentation of particular modules by name, and find
information about what arguments the modules take as options. For example, the following
command displays the documentation for the ping module, which has no options:

[student@controlnode ~]$ ansible-doc ping
> PING (/usr/lib/python2.7/site-packages/ansible/modules/system/ping.py)

 A trivial test module, this module always returns `pong' on successful contact. It
 does not make sense in playbooks, but it is useful from `/usr/bin/ansible' to verify
 the ability to login and that a usable python is configured. This is NOT ICMP ping,
 this is just a trivial test module.

EXAMPLES:
Test we can logon to 'webservers' and execute python with json lib.
ansible webservers -m ping

MAINTAINERS: Ansible Core Team, Michael DeHaan

METADATA:
 Status: ['stableinterface']
 Supported_by: core

Another place to learn about modules is in the online Ansible documentation at http://
docs.ansible.com/ansible/modules_by_category.html.

The following modules might be immediately useful:

• File modules, such as copy (copy a local file to the managed host), get_url (download a
file to the managed host), synchronize (to synchronize content like rsync), file (set
permissions and other properties of a file), and lineinfile (make sure a certain line is or
isn't in a file)

• Software package management modules, such as yum, dnf, apt, pip, gem, and so on

• System administration tools, such as service, to control daemons, and user, to add, remove,
and configure users

• uri, which interacts with a web server and can test functionality or issue API requests

Most modules take arguments. The list of arguments available for a module can be found in
the module's documentation. Ad hoc commands pass arguments to modules using the -a
option. When no argument is needed, omit the -a option from the ad hoc command. If multiple
arguments need to be specified, supply them as a quoted space-separated list.

For example, the following ad hoc command uses the user module to make sure that the
newbie user exists and has UID 4000 on servera.lab.example.com:

http://docs.ansible.com/ansible/modules_by_category.html
http://docs.ansible.com/ansible/modules_by_category.html

Performing Ad Hoc Commands with Ansible

DO407-A2.3-en-2-20170725 35

[student@controlnode ~]$ ansible -m user -a 'name=newbie uid=4000 state=present' \
> servera.lab.example.com
servera.lab.example.com | SUCCESS => {
 "changed": true,
 "comment": "",
 "createhome": true,
 "group": 4000,
 "home": "/home/newbie",
 "name": "newbie",
 "shell": "/bin/bash",
 "state": "present",
 "system": false,
 "uid": 4000
}

Most modules are idempotent, which means that they can be run safely multiple times, and if the
system is already in the correct state, they will do nothing. For example, we can run the previous
ad hoc command again and we should see it report no changes:

[student@controlnode ~]$ ansible -m user -a 'name=newbie uid=4000 state=present' \
> servera.lab.example.com
servera.lab.example.com | SUCCESS => {
 "append": false,
 "changed": false,
 "comment": "",
 "group": 4000,
 "home": "/home/newbie",
 "move_home": false,
 "name": "newbie",
 "shell": "/bin/bash",
 "state": "present",
 "uid": 4000
}

Running Commands with the command Module

The command module allows administrators to execute arbitrary commands on the command line
of managed hosts. The command to be executed is specified as an argument to the module using
the -a option. For example, the following command executes the hostname command on the
managed hosts referenced by the mymanagedhosts host pattern.

[student@controlnode ~]$ ansible mymanagedhosts -m command -a /usr/bin/hostname
host1.lab.example.com | SUCCESS | rc=0 >>
host1.lab.example.com
host2.lab.example.com | SUCCESS | rc=0 >>
host2.lab.example.com

The previous ad hoc command example returned two lines of output for each managed host. The
first line is a status report, which shows the name of the managed host that the ad hoc operation
was performed on, as well as the outcome of the operation. The second line is the output of the
command executed remotely using the Ansible command module.

For better readability and parsing of ad hoc command output, administrators might find it useful
to have a single line of output for each operation performed on a managed host. You can use the
-o option to display the output of Ansible ad hoc commands in a single line format.

[student@controlnode ~]$ ansible mymanagedhosts -m command -a /usr/bin/hostname -o
host1.lab.example.com | SUCCESS | rc=0 >> (stdout) host1.lab.example.com

Chapter 2. Deploying Ansible

36 DO407-A2.3-en-2-20170725

host2.lab.example.com | SUCCESS | rc=0 >> (stdout) host2.lab.example.com

The command module allows administrators to quickly execute remote commands on managed
hosts. These commands are not processed by the shell on the managed hosts. As such, they
cannot access shell environment variables or perform shell operations, such as redirection and
piping.

For situations where commands require shell processing, administrators can use the shell
module. Like the command module, you pass the commands to be executed as arguments to
the module in the ad hoc command. Ansible then executes the command remotely on the
managed hosts. Unlike the command module, the commands are processed through a shell on the
managed hosts. Therefore, shell environment variables are accessible and shell operations such
as redirection and piping are also available for use.

The following example illustrates the difference between the command and shell modules. If an
attempt is made to execute the built-in Bash command set with these two modules, it will only
succeed with the shell module.

[student@demo ~]$ ansible localhost -m command -a set
localhost | FAILED | rc=2 >>
[Errno 2] No such file or directory
[student@demo ~]$ ansible localhost -m shell -a set
localhost | SUCCESS | rc=0 >>
BASH=/bin/sh
BASHOPTS=cmdhist:extquote:force_fignore:hostcomplete:interact
ive_comments:progcomp:promptvars:sourcepath
BASH_ALIASES=()
...output omitted...

Both command and shell require a working Python installation on the managed host. A third
module, raw, can run a command directly on the remote shell, bypassing the module subsystem.
This is useful when managing systems that cannot have Python installed (for example, a network
router). It can also be used to install Python on a host that doesn't have it yet.

Important
In most circumstances, it is a recommended practice that you avoid the command,
shell, and raw "run command" modules.

Most other modules are idempotent and can perform change tracking automatically.
They can test the state of systems and do nothing if those systems are already in the
correct state. By contrast, it's much more complicated to use the "run command"
modules in a way which will be idempotent. Depending on them might make it harder
for you to be confident that re-running an ad hoc command or playbook won't cause an
unexpected failure.

There are times when the "run command" modules are valuable tools and a good
solution to a problem. If you do need to use them, it's probably best to try to use
command first, resorting to shell or raw only if you need their special features.

Configuring Connections for Ad Hoc Commands
The settings for managed host connections and privilege escalation can be configured in the
Ansible configuration file, and they can also be defined using options in ad hoc commands. When

Configuring Connections for Ad Hoc Commands

DO407-A2.3-en-2-20170725 37

defined using options in ad hoc commands, the settings take precedence over those configured
in the Ansible configuration file. The following table shows the analogous command-line options
for each configuration file setting.

Ansible Command-line Options

Setting Command-line option

inventory -i

remote_user -u

become --become, -b

become_method --become-method

become_user --become-user

become_ask_pass --ask-become-pass, -K

Before configuring these settings using command-line options, their currently defined values can
be determined by consulting the output of ansible --help.

[student@controlnode ~]$ ansible --help
...output omitted...
 -b, --become run operations with become (nopasswd implied)
 --become-method=BECOME_METHOD
 privilege escalation method to use (default=sudo),
 valid choices: [sudo | su | pbrun | pfexec | runas |
 doas]
 --become-user=BECOME_USER
...output omitted...
 -u REMOTE_USER, --user=REMOTE_USER
 connect as this user (default=None)

References
ansible(1) man page

Patterns: Ansible Documentation
http://docs.ansible.com/ansible/intro_patterns.html

Introduction to Ad-Hoc Commands: Ansible Documentation
http://docs.ansible.com/ansible/intro_adhoc.html

Module Index: Ansible Documentation
http://docs.ansible.com/ansible/modules_by_category

command - Executes a command on a remote node: Ansible Documentation
http://docs.ansible.com/ansible/command_module.html

shell - Execute commands in nodes: Ansible Documentation
http://docs.ansible.com/ansible/shell_module.html

http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_adhoc.html
http://docs.ansible.com/ansible/modules_by_category
http://docs.ansible.com/ansible/command_module.html
http://docs.ansible.com/ansible/shell_module.html

Chapter 2. Deploying Ansible

38 DO407-A2.3-en-2-20170725

Guided Exercise: Running Ad Hoc Commands

In this exercise, you will execute ad hoc commands on multiple managed hosts.

Outcomes

You should be able to execute commands on managed hosts on an ad hoc basis using privilege
escalation.

We will execute ad hoc commands on workstation and servera using the devops user
account. This account has the same sudo configuration on both workstation and servera.

Before you begin

Log in as the student user on workstation and run lab adhoc setup. This setup script
ensures that the managed host, servera, is reachable on the network. It also creates and
populates the /home/student/dep-adhoc working directory with materials used in this
exercise.

[student@workstation ~]$ lab adhoc setup

Steps

1. Determine the sudo configuration for the devops account on both workstation and
servera.

1.1. Determine the sudo configuration for the devops account that was configured when
workstation was built. Enter student if prompted for the password for the student
account.

[student@workstation ~]$ sudo cat /etc/sudoers.d/devops
[sudo] password for student: student
devops ALL=(ALL) NOPASSWD: ALL

Note that the user has full sudo privileges but does not require password
authentication.

1.2. Determine the sudo configuration for the devops account that was configured when
servera was built.

[student@workstation ~]$ ssh devops@servera.lab.example.com
[devops@servera ~]$ sudo cat /etc/sudoers.d/devops
devops ALL=(ALL) NOPASSWD: ALL
[devops@servera ~]$ exit

Note that the user has full sudo privileges but does not require password
authentication.

2. Change directory to /home/student/dep-adhoc and examine the contents of the
ansible.cfg and inventory files.

[student@workstation ~]$ cd /home/student/dep-adhoc
[student@workstation dep-adhoc]$ cat ansible.cfg
[defaults]
inventory=inventory

DO407-A2.3-en-2-20170725 39

[student@workstation dep-adhoc]$ cat inventory
[myself]
localhost

[intranetweb]
servera.lab.example.com

[everyone:children]
myself
intranetweb

The configuration file uses the directory's inventory file as the Ansible inventory. Note
that we haven't configured Ansible to use privilege escalation yet.

3. Using the ping module, execute an ad hoc command to make sure all managed hosts in the
everyone group can run Ansible modules using Python.

[student@workstation dep-adhoc]$ ansible everyone -m ping
servera.lab.example.com | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
localhost | SUCCESS => {
 "changed: false,
 "ping": "pong"
}

4. Using the command module, execute an ad hoc command on workstation to identify the
user account used by Ansible to perform operations on managed hosts. Use the localhost
host pattern to connect to workstation for the ad hoc command execution. Because we
are connecting locally, workstation is both the control node and managed host.

[student@workstation dep-adhoc]$ ansible localhost -m command -a 'id'
localhost | SUCCESS | rc=0 >>
uid=1000(student) gid=1000(student) groups=1000(student),10(wheel)
 context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Notice that the ad hoc command was performed on the managed host as the student user.

5. Execute the previous ad hoc command on workstation but connect and perform the
operation with the devops user account by using the -u option.

[student@workstation dep-adhoc]$ ansible localhost -m command -a 'id' -u devops
localhost | SUCCESS | rc=0 >>
uid=1001(devops) gid=1001(devops) groups=1001(devops)
 context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Notice that the ad hoc command was performed on the managed host as the devops user.

6. Using the command module, execute an ad hoc command on workstation to display the
contents of the /etc/motd file. Execute the command using the devops account.

[student@workstation dep-adhoc]$ ansible localhost -m command -a 'cat /etc/motd' -u
 devops
localhost | SUCCESS | rc=0 >>

Chapter 2. Deploying Ansible

40 DO407-A2.3-en-2-20170725

Notice that the /etc/motd file is currently empty.

7. Using the copy module, execute an ad hoc command on workstation to change the
contents of the /etc/motd file so that it consists of the string "Managed by Ansible"
followed by a newline. Execute the command using the devops account, but do not use
the --become option to switch to root. The ad hoc command should fail due to lack of
permissions.

[student@workstation dep-adhoc]$ ansible localhost -m copy -a 'content="Managed by
 Ansible\n" dest=/etc/motd' -u devops
localhost | FAILED! => {
 "changed": false,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "failed": true,
 "msg": "Destination /etc not writable"
}

The ad hoc command failed because the devops user does not have permission to write the
file.

8. Try that again with privilege escalation. You could fix the settings in the ansible.cfg file,
but for this example just use appropriate command line options of the ansible command.

Using the copy module, execute the previous command on workstation to change the
contents of the /etc/motd file so that it consists of the string "Managed by Ansible"
followed by a newline. Use the devops user to make the connection to the managed host,
but perform the operation as the root user using the --become option.

[student@workstation dep-adhoc]$ ansible localhost -m copy -a 'content="Managed by
 Ansible\n" dest=/etc/motd' -u devops --become
localhost | SUCCESS => {
 "changed": true,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "65a4290ee5559756ad04e558b0e0c4e3",
 "mode": "0644",
 "owner": "root",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 19,
 "src": "/home/devops/.ansible/tmp/ansible-tmp-1463518320.68-167292050637471/
source",
 "state": "file",
 "uid": 0
}

Note that the command succeeded this time because the ad hoc command was executed
with privilege escalation.

9. Try that ad hoc command again on all hosts in the everyone host group. That will make
sure that /etc/motd on both workstation and servera consist of the text "Managed
by Ansible".

[student@workstation dep-adhoc]$ ansible everyone -m copy -a 'content="Managed by
 Ansible\n" dest=/etc/motd' -u devops --become

DO407-A2.3-en-2-20170725 41

localhost | SUCCESS => {
 "changed": false,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "65a4290ee5559756ad04e558b0e0c4e3",
 "mode": "0644",
 "owner": "root",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 35,
 "src": "/home/vagrant/.ansible/tmp/ansible-tmp-1499301796.26-92607052136399/
source",
 "state": "file",
 "uid": 0
}
servera.lab.example.com | SUCCESS => {
 "changed": true,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "65a4290ee5559756ad04e558b0e0c4e3",
 "mode": "0644",
 "owner": "root",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 19,
 "src": "/home/devops/.ansible/tmp/ansible-tmp-1499301796.28-93111008249456/
source",
 "state": "file",
 "uid": 0
}

You should see SUCCESS for both localhost and servera. However, localhost should
report "changed": false because the file is already in the correct state there. Likewise,
servera should report "changed": true because the ad hoc command updated the file
to the correct state.

10. Using the command module, execute an ad hoc command to run cat /etc/motd to verify
that the contents of the file have been successfully modified on both workstation and
servera. Use the everyone host group and the devops user to specify and make the
connection to the managed hosts. You do not need privilege escalation for this command to
work.

[student@workstation dep-adhoc]$ ansible everyone -m command -a 'cat /etc/motd' -u
 devops
servera.lab.example.com | SUCCESS | rc=0 >>
Managed by Ansible

localhost | SUCCESS | rc=0 >>
Managed by Ansible

Chapter 2. Deploying Ansible

42 DO407-A2.3-en-2-20170725

Managing Dynamic Inventories

Objective
After completing this section, students should be able to use an Ansible dynamic inventory to
programmatically build an inventory from external data sources.

Generating Inventories Dynamically
The static inventory files you've worked with so far are easy to write, and are convenient for
managing small infrastructures. When working with a large number of machines, however, or
in an environment where machines come and go very quickly, it can be hard to keep the static
inventory files up-to-date.

Most large IT environments have systems that keep track of which hosts are available and how
they are organized. For example, there might be an external directory service maintained by
a monitoring system such as Zabbix, or on FreeIPA or Active Directory servers. Installation
servers such as Cobbler or management services such as Red Hat Satellite might track deployed
bare-metal systems. In a similar way, cloud services such as Amazon Web Services EC2 or
an OpenStack deployment, or virtual machine infrastructures based on VMware or Red Hat
Virtualization might be sources of information about the instances and virtual machines that
come and go.

Ansible supports dynamic inventory scripts that retrieve current information from these types
of sources whenever Ansible executes, allowing the inventory to be updated in real time. These
scripts are executable programs that collect information from some external source and output
the inventory in JSON format.

Dynamic inventory scripts are used just like static inventory text files. The location of the
inventory is specified either directly in the current ansible.cfg file, or using the -i option.
If the inventory file is executable, it is treated as a dynamic inventory program and Ansible
attempts to run it to generate the inventory. If the file is not executable, it is treated as a static
inventory.

Note
The inventory location can be configured in the ansible.cfg configuration file with
the inventory parameter. By default, it is configured to be /etc/ansible/hosts.

Contributed Scripts
A number of existing dynamic inventory scripts have been contributed to the Ansible project by
the open source community. They're not included in the ansible package or officially supported
by Red Hat. They are available from the Ansible GitHub site at https://github.com/
ansible/ansible/tree/devel/contrib/inventory.

Some of the data sources or platforms that are targeted by contributed dynamic inventory
scripts include:

• Private cloud platforms, such as Red Hat OpenStack Platform.

Writing Dynamic Inventory Programs

DO407-A2.3-en-2-20170725 43

• Public cloud platforms, such as Rackspace Cloud, Amazon Web Services EC2, or Google
Compute Engine.

• Virtualization platforms, such as Red Hat Virtualization (oVirt) and VMware vSphere.

• Platform-as-a-Service solutions, such as OpenShift Container Platform.

• Life cycle management tools, such as Foreman (with Red Hat Satellite 6 or stand-alone) and
Spacewalk (upstream of Red Hat Satellite 5).

• Hosting providers, such as Digital Ocean or Linode.

Each script might have its own dependencies and requirements in order to function. The
contributed scripts are mostly written in Python, but that's not a requirement for dynamic
inventory scripts.

Writing Dynamic Inventory Programs
If a dynamic inventory script does not exist for the directory system or infrastructure in use, it
is possible to write a custom dynamic inventory program. It can be written in any programming
language, and must return inventory information in JSON format when passed appropriate
options.

If you want to write your own dynamic inventory script, more detailed information is available
at Developing Dynamic Inventory Sources [http://docs.ansible.com/ansible/dev_guide/
developing_inventory.html] in the Ansible Developer Guide. The following is a brief overview.

The script should start with an appropriate "shebang" line (for example, #!/usr/bin/python)
and should be executable so that Ansible can run it.

When passed the --list option, the script must output a JSON-encoded hash/dictionary of all
of the hosts and groups in the inventory to standard output.

In its simplest form, a group can be a list of managed hosts. In this example of the
JSON-encoded output from an inventory script, webservers is a host group which has
web1.lab.example.com and web2.lab.example.com as managed hosts in the group. The
databases host group includes the db1.lab.example.com and db2.lab.example.com
hosts as members.

[student@workstation ~]$./inventoryscript --list
{
 "webservers" : ["web1.lab.example.com", "web2.lab.example.com"],
 "databases" : ["db1.lab.example.com", "db2.lab.example.com"]
}

Alternatively, each group's value can be a JSON hash/dictionary containing a list of each
managed host, any child groups, and any group variables that might be set. The next example
shows the JSON-encoded output for a more complex dynamic inventory. The boston group has
two child groups (backup and ipa), three managed hosts of its own, and a group variable set
(example_host: false).

{
 "webservers" : [
 "web1.demo.example.com",
 "web2.demo.example.com"
],

http://docs.ansible.com/ansible/dev_guide/developing_inventory.html
http://docs.ansible.com/ansible/dev_guide/developing_inventory.html
http://docs.ansible.com/ansible/dev_guide/developing_inventory.html

Chapter 2. Deploying Ansible

44 DO407-A2.3-en-2-20170725

 "boston" : {
 "children" : [
 "backup",
 "ipa"
],
 "vars" : {
 "example_host" : false
 },
 "hosts" : [
 "server1.demo.example.com",
 "server2.demo.example.com",
 "server3.demo.example.com"
]
 },
 "backup" : [
 "server4.demo.example.com"
],
 "ipa" : [
 "server5.demo.example.com"
],
 "_meta" : {
 "hostvars" : {
 "server5.demo.example.com": {
 "ntpserver": "ntp.demo.example.com",
 "dnsserver": "dns.demo.example.com"
 }
 }
 }
}

The script should also support the --host managed-host option. That option may print a
JSON hash/dictionary consisting of variables which should be associated with that host. If it does
not, it must print an empty JSON hash/dictionary.

[student@workstation ~]$./inventoryscript --host server5.demo.example.com
{
 "ntpserver" : "ntp.demo.example.com",
 "dnsserver" : "dns.demo.example.com"
}

Note
When called with the --host hostname option, the script must print a JSON hash/
dictionary of the variables for the specified host (potentially an empty JSON hash or
dictionary if there are no variables provided).

Optionally, if the --list option returns a top-level element called _meta, it is possible
to return all host variables in one script call, which improves script performance. In that
case, --host calls are not made.

See Developing Dynamic Inventory Sources [http://docs.ansible.com/ansible/
developing_inventory.html] for more information.

Managing Multiple Inventories
Ansible supports the use of multiple inventories in the same run. If either the value passed to the
-i option or the value of the inventory parameter in the configuration file is a directory, then

http://docs.ansible.com/ansible/developing_inventory.html
http://docs.ansible.com/ansible/developing_inventory.html
http://docs.ansible.com/ansible/developing_inventory.html

Managing Multiple Inventories

DO407-A2.3-en-2-20170725 45

all inventory files included in the directory, either static or dynamic, are combined to determine
the inventory. The executable files within that directory are used to retrieve dynamic inventories,
and the other files are used as static inventories.

Inventory files should not depend on other inventory files or scripts in order to resolve. For
example, if a static inventory file specifies that a particular group should be a child of another
group, it also needs to have a placeholder entry for that group, even if all members of that group
come from the dynamic inventory. Consider the cloud-east group in the following example:

[cloud-east]

[servers]
test.demo.example.com

[servers:children]
cloud-east

This ensures that no matter what the order is in which inventory files are parsed, all of them are
internally consistent.

Note
The order in which inventory files are parsed is not specified by the documentation.
Currently, when multiple inventory files exist, they seem to be parsed in alphabetical
order. If one inventory source depends on information from another in order to make
sense, whether it works or whether it throws an error may depend on the order in
which they're loaded. Therefore, it's important to make sure that all files are self-
consistent to avoid unexpected errors.

Ansible ignores files in an inventory directory if they end with certain suffixes. This can be
controlled with the inventory_ignore_extensions directive in the Ansible configuration file
being used. More information is available in the Ansible documentation.

References
Dynamic Inventory: Ansible Documentation
http://docs.ansible.com/ansible/intro_dynamic_inventory.html

Developing Dynamic Inventory Sources: Ansible Documentation
http://docs.ansible.com/ansible/developing_inventory.html

http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/developing_inventory.html

Chapter 2. Deploying Ansible

46 DO407-A2.3-en-2-20170725

Guided Exercise: Managing Dynamic
Inventories

In this exercise, you will install custom scripts that dynamically generate a list of inventory hosts.

Outcomes

You should be able to install and use existing dynamic inventory scripts.

Before you begin

Log in to workstation as student using student as the password.

On workstation, run the lab deploy-dynamic setup script. It checks if Ansible is installed
on workstation and also creates a working directory for this exercise.

[student@workstation ~]$ lab deploy-dynamic setup

Steps

1. On workstation, change to the working directory for the exercise, /home/student/dep-
dynamic.

[student@workstation ~]$ cd /home/student/dep-dynamic

2. Create an ansible.cfg Ansible configuration file in the working directory and populate
it with the following entries so that the inventory directory is configured as the default
inventory.

[defaults]
inventory = inventory

3. Create the /home/student/dep-dynamic/inventory directory.

[student@workstation dep-dynamic]$ mkdir inventory

4. From http://materials.example.com/dynamic/, download the inventorya.py,
inventoryw.py, and hosts files to your /home/student/dep-dynamic/inventory
directory. Both of the files ending in .py are scripts that generate dynamic inventories, and
the third file is a static inventory.

• The inventorya.py script provides the webservers group, which includes the
servera.lab.example.com host.

• The inventoryw.py script provides the workstation.lab.example.com host.

• The hosts static inventory file defines the servers group, which is a parent group of the
webservers group.

[student@workstation dep-dynamic]$ wget http://materials.example.com/dynamic/
inventorya.py -O inventory/inventorya.py

DO407-A2.3-en-2-20170725 47

[student@workstation dep-dynamic]$ wget http://materials.example.com/dynamic/
inventoryw.py -O inventory/inventoryw.py
[student@workstation dep-dynamic]$ wget http://materials.example.com/dynamic/hosts -
O inventory/hosts

5. Using the ansible command with the inventorya.py script as the inventory, list the
managed hosts associated with the webservers group. It should raise an error relating to
the permissions of inventorya.py.

[student@workstation dep-dynamic]$ ansible -i inventory/inventorya.py webservers --
list-hosts
ERROR! The file inventory/inventorya.py looks like it should be an
 executable inventory script, but is not marked executable. Perhaps you
 want to correct this with `chmod +x inventory/inventory.py`?

6. Check the current permissions for the inventorya.py script, and change them to 755.

[student@workstation dep-dynamic]$ ls -la inventory/inventorya.py
-rw-rw-r--. 1 student student 0 Apr 29 14:20 inventory/inventorya.py
[student@workstation dep-dynamic]$ chmod 755 inventory/inventorya.py

7. Change the permissions for the inventoryw.py script to 755.

[student@workstation dep-dynamic]$ chmod 755 inventory/inventoryw.py

8. Check the current output for the inventorya.py script using the --list parameter. The
hosts associated with the webservers group are displayed.

[student@workstation dep-dynamic]$ inventory/inventorya.py --list
{"webservers": {"hosts": ["servera.lab.example.com"], "vars": {} } }

9. Check the current output for the inventoryw.py script using the --list parameter. The
workstation.lab.example.com host is displayed.

[student@workstation dep-dynamic]$ inventory/inventoryw.py --list
{"all": {"hosts": ["workstation.lab.example.com"], "vars": {} } }

10. Check the servers group definition in the /home/student/dep-dynamic/inventory/
hosts file. The webservers group defined in the dynamic inventory is configured as a child
of the servers group.

[student@workstation dep-dynamic]$ cat inventory/hosts
[servers:children]
webservers

11. Run the following command to verify the list of hosts in the webservers group. It raises an
error about the webservers group being undefined.

[student@workstation dep-dynamic]$ ansible webservers --list-hosts
ERROR! Attempted to read "/home/student/dep-dynamic/inventory/hosts" as YAML: Syntax
 Error while loading YAML.

Chapter 2. Deploying Ansible

48 DO407-A2.3-en-2-20170725

The error appears to have been in '/home/student/dep-dynamic/inventory/hosts': line
 1, column 9, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

[servers:children]
 ^ here

Attempted to read "/home/student/dep-dynamic/inventory/hosts" as ini file: /home/
student/dep-dynamic/inventory/hosts:2: Section [servers:children] includes undefined
 group: webservers

12. To make sure this problem doesn't happen, the static inventory should have a placeholder
entry which defines an empty webservers host group. It's important for the static
inventory to define any host group it references, because it's possible that it could
dynamically disappear from the external source, which would cause this error.

Edit the /home/student/dep-dynamic/inventory/hosts file so it contains the
following content:

[webservers]

[servers:children]
webservers

Important
If the dynamic inventory script that provides the host group is named so that
it sorts before the static inventory referencing it, you might not see this error.
However, if the host group ever disappears from the dynamic inventory, and you
don't do this, the static inventory will be referencing a missing host group and the
error will break the parsing of the inventory.

13. Rerun the following command to verify the list of hosts in the webservers group. It should
work without any errors.

[student@workstation dep-dynamic]$ ansible webservers --list-hosts
 hosts (1):
 servera.lab.example.com

Lab: Deploying Ansible

DO407-A2.3-en-2-20170725 49

Lab: Deploying Ansible

In this lab, you will configure an Ansible control node for connections to inventory hosts and use
ad hoc commands to perform actions on managed hosts.

Outcomes

You should be able to configure a control node to run ad hoc commands on managed hosts.

You need to use Ansible to manage a number of hosts from workstation.lab.example.com
as the student user. You will set up a project directory containing an ansible.cfg file with
some specific defaults, and an inventory containing some inventory files and scripts.

You will then use ad hoc commands to ensure the /etc/motd file on all the machines in a
particular host group consists of specified content.

Before you begin

Log in as the student user on workstation and run lab deploy setup. This setup script
ensures that the managed hosts are reachable on the network.

[student@workstation ~]$ lab deploy setup

Steps

1. Verify that the ansible package is installed on the control node, and run the ansible --
version command.

2. In the student user's home directory on workstation, /home/student, create a new
directory named dep-lab. Change to that directory.

3. Create an ansible.cfg file in the dep-lab directory, which you should use to set the
following Ansible defaults:

• Connect to managed hosts as the devops user.

• Use the inventory subdirectory to contain inventory files and scripts.

• Disable privilege escalation by default. If privilege escalation is enabled from the
command line, configure default settings to have Ansible use the sudo method to
switch to the root user account. Ansible should not prompt for either the devops login
password or the sudo password.

Your managed hosts have already been configured for you, with a devops user that
student can log in as with SSH key-based authentication and that can run any command as
root using sudo without a password.

4. Create the /home/student/dep-lab/inventory directory. Some inventory files have
been provided for you to add to that directory:

• Download http://materials.example.com/dynamic/inventory and save it as
a static inventory file named /home/student/dep-lab/inventory/inventory.
Modify the static inventory so that the host group everyone includes the child host group
internetweb, which will be provided by the dynamic inventory script.

Chapter 2. Deploying Ansible

50 DO407-A2.3-en-2-20170725

• Download http://materials.example.com/dynamic/binventory.py and save
it as a dynamic inventory script named /home/student/dep-lab/inventory/
binventory.py. Make sure its permissions allow it to be run by Ansible as a script.

5. Execute an ad hoc command targeting the everyone host group to verify that devops is
the remote user and that privilege escalation is disabled by default.

6. Execute an ad hoc command, targeting your everyone host group, that uses the copy
module to modify the contents of the /etc/motd file on all hosts in the group, based on the
following instructions.

Use the copy module's content directive to ensure the /etc/motd file consists of the
string This server is managed by Ansible.\n as a single line. (The \n used with the
content directive causes the module to put a newline at the end of the string.)

You need to request privilege escalation from the command line to make this work with your
current ansible.cfg defaults.

7. If you run the same ad hoc command again, you should see that the copy module detects
that the files are already correct and does not change them. Look for the ad hoc command
to report SUCCESS and the line "changed": false for each managed host.

8. To confirm this another way, run an ad hoc command that targets the everyone group, and
which uses the command module to execute cat /etc/motd. The output from ansible
should show the string "This server is managed by Ansible." for all hosts. You
don't need privilege escalation for this ad hoc command.

9. Run lab deploy grade on workstation to check your work.

[student@workstation dep-lab]$ lab deploy grade

Solution

DO407-A2.3-en-2-20170725 51

Solution
In this lab, you will configure an Ansible control node for connections to inventory hosts and use
ad hoc commands to perform actions on managed hosts.

Outcomes

You should be able to configure a control node to run ad hoc commands on managed hosts.

You need to use Ansible to manage a number of hosts from workstation.lab.example.com
as the student user. You will set up a project directory containing an ansible.cfg file with
some specific defaults, and an inventory containing some inventory files and scripts.

You will then use ad hoc commands to ensure the /etc/motd file on all the machines in a
particular host group consists of specified content.

Before you begin

Log in as the student user on workstation and run lab deploy setup. This setup script
ensures that the managed hosts are reachable on the network.

[student@workstation ~]$ lab deploy setup

Steps

1. Verify that the ansible package is installed on the control node, and run the ansible --
version command.

1.1. Verify that the ansible package is installed.

[student@workstation ~]$ yum list installed ansible
Installed Packages
ansible.noarch 2.3.1.0-1.el7 @ansible

1.2. Run the ansible --version command to confirm the version of Ansible that is
installed.

[student@workstation ~]$ ansible --version
ansible 2.3.1.0
 config file = /etc/ansible/ansible.cfg
 configured module search path = Default w/o overrides
 python version = 2.7.5 (default, Aug 2 2016, 04:20:16) [GCC 4.8.5 20150623
 (Red Hat 4.8.5-4)]

2. In the student user's home directory on workstation, /home/student, create a new
directory named dep-lab. Change to that directory.

[student@workstation ~]$ mkdir /home/student/dep-lab
[student@workstation ~]$ cd /home/student/dep-lab

3. Create an ansible.cfg file in the dep-lab directory, which you should use to set the
following Ansible defaults:

• Connect to managed hosts as the devops user.

• Use the inventory subdirectory to contain inventory files and scripts.

Chapter 2. Deploying Ansible

52 DO407-A2.3-en-2-20170725

• Disable privilege escalation by default. If privilege escalation is enabled from the
command line, configure default settings to have Ansible use the sudo method to
switch to the root user account. Ansible should not prompt for either the devops login
password or the sudo password.

Your managed hosts have already been configured for you, with a devops user that
student can log in as with SSH key-based authentication and that can run any command as
root using sudo without a password.

3.1. Use a text editor to create /home/student/dep-lab/ansible.cfg. Create a
[defaults] section. Add a remote_user directive to have Ansible use the devops
user when connecting to managed hosts. Also add an inventory directive to configure
Ansible to use the /home/student/dep-lab/inventory directory as the default
inventory.

[defaults]
remote_user = devops
inventory = inventory

3.2. In the /home/student/dep-lab/ansible.cfg file, create the
[privilege_escalation] section and add the following entries to disable privilege
escalation. Set the privilege escalation method to use the root account with sudo and
without password authentication.

[privilege_escalation]
become = False
become_method = sudo
become_user = root
become_ask_pass = False

3.3. Confirm that the completed ansible.cfg file reads:

[defaults]
remote_user = devops
inventory = inventory

[privilege_escalation]
become = False
become_method = sudo
become_user = root
become_ask_pass = False

Save your work and exit the editor.

4. Create the /home/student/dep-lab/inventory directory. Some inventory files have
been provided for you to add to that directory:

• Download http://materials.example.com/dynamic/inventory and save it as
a static inventory file named /home/student/dep-lab/inventory/inventory.
Modify the static inventory so that the host group everyone includes the child host group
internetweb, which will be provided by the dynamic inventory script.

Solution

DO407-A2.3-en-2-20170725 53

• Download http://materials.example.com/dynamic/binventory.py and save
it as a dynamic inventory script named /home/student/dep-lab/inventory/
binventory.py. Make sure its permissions allow it to be run by Ansible as a script.

4.1. Create the /home/student/dep-lab/inventory directory.

[student@workstation dep-lab]$ mkdir inventory

4.2. Download the http://materials.example.com/dynamic/inventory file to the /
home/student/dep-lab/inventory directory.

[student@workstation dep-lab]$ wget http://materials.example.com/dynamic/
inventory -O inventory/inventory

4.3. Download the http://materials.example.com/dynamic/binventory.py script
to the /home/student/dep-lab/inventory directory, and change its permission to
755.

[student@workstation dep-lab]$ wget http://materials.example.com/dynamic/
binventory.py -O inventory/binventory.py
[student@workstation dep-lab]$ chmod 755 inventory/binventory.py

4.4. Configure the internetweb group as a child of the existing everyone group by adding
the following entries to the /home/student/dep-lab/inventory/inventory file.

[internetweb]

[intranetweb]
servera.lab.example.com

[everyone:children]
intranetweb
internetweb

5. Execute an ad hoc command targeting the everyone host group to verify that devops is
the remote user and that privilege escalation is disabled by default.

[student@workstation dep-lab]$ ansible everyone -m command -a 'id'
serverb.lab.example.com | SUCCESS | rc=0 >>
uid=1001(devops) gid=1001(devops) groups=1001(devops) context=unconfined_u:
 unconfined_r:unconfined_t:s0-s0:c0.c1023

serverc.lab.example.com | SUCCESS | rc=0 >>
uid=1001(devops) gid=1001(devops) groups=1001(devops) context=unconfined_u:
 unconfined_r:unconfined_t:s0-s0:c0.c1023

servera.lab.example.com | SUCCESS | rc=0 >>
uid=1001(devops) gid=1001(devops) groups=1001(devops) context=unconfined_u:
 unconfined_r:unconfined_t:s0-s0:c0.c1023

serverd.lab.example.com | SUCCESS | rc=0 >>
uid=1001(devops) gid=1001(devops) groups=1001(devops) context=unconfined_u:
 unconfined_r:unconfined_t:s0-s0:c0.c1023

Chapter 2. Deploying Ansible

54 DO407-A2.3-en-2-20170725

Your results may be returned in a different order.

6. Execute an ad hoc command, targeting your everyone host group, that uses the copy
module to modify the contents of the /etc/motd file on all hosts in the group, based on the
following instructions.

Use the copy module's content directive to ensure the /etc/motd file consists of the
string This server is managed by Ansible.\n as a single line. (The \n used with the
content directive causes the module to put a newline at the end of the string.)

You need to request privilege escalation from the command line to make this work with your
current ansible.cfg defaults.

[student@workstation dep-lab]$ ansible everyone -m copy \
> -a 'content="This server is managed by Ansible.\n" dest=/etc/motd' --become
servera.lab.example.com | SUCCESS => {
 "changed": true,
 "checksum": "93d304488245bb2769752b95e0180607effc69ad",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "af74293c7b2a783c4f87064374e9417a",
 "mode": "0644",
 "owner": "root",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 35,
 "src": "/home/devops/.ansible/tmp/ansible-tmp-1499275864.56-280761564717921/
source",
 "state": "file",
 "uid": 0
}
serverb.lab.example.com | SUCCESS => {
 "changed": true,
 "checksum": "93d304488245bb2769752b95e0180607effc69ad",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "af74293c7b2a783c4f87064374e9417a",
 "mode": "0644",
 "owner": "root",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 35,
 "src": "/home/devops/.ansible/tmp/ansible-tmp-1499275864.51-224886037138847/
source",
 "state": "file",
 "uid": 0
}
serverc.lab.example.com | SUCCESS => {
 "changed": true,
 "checksum": "93d304488245bb2769752b95e0180607effc69ad",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "af74293c7b2a783c4f87064374e9417a",
 "mode": "0644",
 "owner": "root",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 35,
 "src": "/home/devops/.ansible/tmp/ansible-tmp-1499275864.56-242019037094684/
source",
 "state": "file",

Solution

DO407-A2.3-en-2-20170725 55

 "uid": 0
}
serverd.lab.example.com | SUCCESS => {
 "changed": true,
 "checksum": "93d304488245bb2769752b95e0180607effc69ad",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "af74293c7b2a783c4f87064374e9417a",
 "mode": "0644",
 "owner": "root",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 35,
 "src": "/home/devops/.ansible/tmp/ansible-tmp-1499275864.58-48889952156589/
source",
 "state": "file",
 "uid": 0
}

7. If you run the same ad hoc command again, you should see that the copy module detects
that the files are already correct and does not change them. Look for the ad hoc command
to report SUCCESS and the line "changed": false for each managed host.

[student@workstation dep-lab]$ ansible everyone -m copy \
> -a 'content="This server is managed by Ansible.\n" dest=/etc/motd' --become
servera.lab.example.com | SUCCESS => {
 "changed": false,
 "checksum": "93d304488245bb2769752b95e0180607effc69ad",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "mode": "0644",
 "owner": "root",
 "path": "/etc/motd",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 35,
 "state": "file",
 "uid": 0
}
serverd.lab.example.com | SUCCESS => {
 "changed": false,
 "checksum": "93d304488245bb2769752b95e0180607effc69ad",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "mode": "0644",
 "owner": "root",
 "path": "/etc/motd",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 35,
 "state": "file",
 "uid": 0
}
serverc.lab.example.com | SUCCESS => {
 "changed": false,
 "checksum": "93d304488245bb2769752b95e0180607effc69ad",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "mode": "0644",
 "owner": "root",
 "path": "/etc/motd",

Chapter 2. Deploying Ansible

56 DO407-A2.3-en-2-20170725

 "secontext": "system_u:object_r:etc_t:s0",
 "size": 35,
 "state": "file",
 "uid": 0
}
serverb.lab.example.com | SUCCESS => {
 "changed": false,
 "checksum": "93d304488245bb2769752b95e0180607effc69ad",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "mode": "0644",
 "owner": "root",
 "path": "/etc/motd",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 35,
 "state": "file",
 "uid": 0
}

8. To confirm this another way, run an ad hoc command that targets the everyone group, and
which uses the command module to execute cat /etc/motd. The output from ansible
should show the string "This server is managed by Ansible." for all hosts. You
don't need privilege escalation for this ad hoc command.

[student@workstation dep-lab]$ ansible everyone -m command -a 'cat /etc/motd'
serverb.lab.example.com | SUCCESS | rc=0 >>
This server is managed by Ansible.

servera.lab.example.com | SUCCESS | rc=0 >>
This server is managed by Ansible.

serverd.lab.example.com | SUCCESS | rc=0 >>
This server is managed by Ansible.

serverc.lab.example.com | SUCCESS | rc=0 >>
This server is managed by Ansible.

9. Run lab deploy grade on workstation to check your work.

[student@workstation dep-lab]$ lab deploy grade

Summary

DO407-A2.3-en-2-20170725 57

Summary

In this chapter, you learned:

• Any system on which Ansible is installed and which has access to the right configuration files
and playbooks to manage remote systems (managed hosts) is called a control node.

• Managed hosts are defined in the inventory. Host patterns are used to reference managed
hosts defined in an inventory.

• Inventories can be a static file or dynamically generated by a program from an external source,
such as a directory service or cloud management system.

• The location of the inventory is controlled by the Ansible configuration file in use, but most
frequently is kept with the playbook files.

• Ansible looks for its configuration file in a number of places in order of precedence. The first
configuration file found is used; all others are ignored.

• The ansible command is used to perform ad hoc commands on managed hosts.

• Ad hoc commands determine the operation to perform through the use of modules and their
arguments.

• Ad hoc commands requiring additional permissions can make use of Ansible's privilege
escalation features.

58

DO407-A2.3-en-2-20170725 59

TRAINING

CHAPTER 3

IMPLEMENTING PLAYBOOKS

Overview

Goal Write Ansible plays and execute a playbook.

Objectives • Write a basic Ansible Playbook and run it using the
ansible-playbook command.

• Write and run a more sophisticated Ansible Playbook using
multiple plays and privilege escalation.

Sections • Writing and Running Playbooks (and Guided Exercise)

• Implementing Multiple Plays (and Guided Exercise)

Lab • Implementing Playbooks

Chapter 3. Implementing Playbooks

60 DO407-A2.3-en-2-20170725

Writing and Running Playbooks

Objective
After completing this section, students should be able to write a basic Ansible Playbook and run
it using the ansible-playbook command.

Ansible Playbooks and Ad Hoc Commands
Ad hoc commands can run a single, simple task against a set of targeted hosts as a one-time
command. The real power of Ansible, however, is in learning how to use playbooks to run
multiple, complex tasks against a set of targeted hosts in an easily repeatable manner.

A play is an ordered set of tasks which should be run against hosts selected from your inventory.
A playbook is a text file that contains a list of one or more plays to run in order.

Plays allow you to change a lengthy, complex set of manual administrative tasks into an easily
repeatable routine with predictable and successful outcomes. In a playbook, you can save the
sequence of tasks in a play into a human-readable and immediately runnable form. The tasks
themselves, because of the way in which they are written, document the steps needed to deploy
your application or infrastructure.

Format of an Ansible Playbook
To help you understand the format of a playbook, we will review an ad hoc command that you
saw in a previous chapter:

[student@controlnode ~]$ ansible -m user -a "name=newbie uid=4000 state=present" \
> servera.lab.example.com

This can be rewritten as a simple single-task play and saved in a playbook. The resulting playbook
might appear as follows:

Example 3.1. A Simple Playbook

- name: Configure important user consistently
 hosts: servera.lab.example.com
 tasks:
 - name: newbie exists with UID 4000
 user:
 name: newbie
 uid: 4000
 state: present

A playbook is a text file written in YAML format, and is normally saved with the extension yml.
The playbook primarily uses indentation with space characters to indicate the structure of its
data. YAML doesn't place strict requirements on how many spaces are used for the indentation,
but there are two basic rules.

• Data elements at the same level in the hierarchy (such as items in the same list) must have the
same indentation.

Format of an Ansible Playbook

DO407-A2.3-en-2-20170725 61

• Items that are children of another item must be indented more than their parents.

You can also add blank lines for readability.

Important
Only the space character can be used for indentation; tab characters are not allowed.

If you use the Vim text editor, you can apply some settings which might make it
easier to edit your playbooks. For example, by adding the following line to your
$HOME/.vimrc file, when vim detects that you're editing a YAML file, it will perform
a two space indentation when the Tab key is pressed, will autoindent subsequent lines,
and will expand tabs into spaces.

autocmd FileType yaml setlocal ai ts=2 sw=2 et

The playbook begins with a line consisting of three dashes (---) as a start of document marker.
It might also end with three dots (...) as an end of document marker, although in practice this is
rarely used for playbooks.

In between those markers, the playbook is defined as a list of plays. An item in a YAML list starts
with a single dash followed by a space. For example, a YAML list might appear as follows:

- apple
- orange
- grape

In Example 3.1, “A Simple Playbook”, the line after --- begins with a dash and starts the first (and
only) play in the list of plays.

The play itself is a collection (an associative array or hash/dictionary) of key: value pairs. Keys in
the same play should have the same indentation. The following example describes a YAML hash/
dictionary with three keys. The first two keys have simple values. The third has a list of three
items as a value.

 name: just an example
 hosts: webservers
 tasks:
 - first
 - second
 - third

The original example play has three keys: name, hosts, and tasks. These keys all have the same
indentation because they belong to the play.

The first line of the example play starts with a dash and a space (indicating the play is the first
item of a list), and then the first key, the name attribute. The name associates an arbitrary string
with the play as a label. This identifies what the play is for. The name key is optional, but is
recommended because it helps to document your playbook. This is especially useful when a
playbook contains multiple plays.

- name: Configure important user consistently

Chapter 3. Implementing Playbooks

62 DO407-A2.3-en-2-20170725

The second key in the play is a hosts attribute, which specifies the hosts against which the
play's tasks should be run. Like the argument for the ansible command, the hosts attribute
takes a host pattern as a value, such as the names of managed hosts or groups in the inventory.

 hosts: servera.lab.example.com

Finally, the last key in the play is the tasks attribute, whose value specifies a list of the tasks
to run for this play. This example has a single task which runs the user module with specific
arguments (to ensure user newbie exists and has UID 4000).

 tasks:
 - name: newbie exists with UID 4000
 user:
 name: newbie
 uid: 4000
 state: present

The tasks attribute is the part of the play that actually lists, in order, the tasks to be run on the
managed hosts. Each task in the list is itself a collection of key-value pairs.

In our example, the only task in the play has two keys:

• name is an optional label documenting the purpose of the task. It's a good idea to name all of
your tasks to help document the purpose of each step of the automation process.

• user is the module to run for this task. Its arguments are passed as a collection of key-value
pairs, which are children of the module (name, uid, and state).

The following is another example of a tasks attribute with multiple tasks, using the service
module to ensure that several network services are enabled to start at boot:

 tasks:
 - name: web server is enabled
 service:
 name: httpd
 enabled: true

 - name: NTP server is enabled
 service:
 name: chronyd
 enabled: true

 - name: Postfix is enabled
 service:
 name: postfix
 enabled: true

Important
The order in which the plays and tasks are listed in a playbook is important, because
Ansible runs them in the same order.

The playbooks you've seen so far are basic examples, and you'll see more sophisticated examples
of what you can do with plays and tasks as this course continues.

Running Playbooks

DO407-A2.3-en-2-20170725 63

Running Playbooks
The ansible-playbook command is used to run playbooks. The command is executed on the
control node and the name of the playbook to be run is passed as an argument:

[student@controlnode ~]$ ansible-playbook site.yml

When the playbook is executed, output is generated to show the play and tasks being executed.
The output also reports the results of each task executed.

The following example shows the contents of a simple playbook, and then the result of running it.

[student@controlnode imp-playdemo]$ cat webserver.yml

- name: play to setup web server
 hosts: servera.lab.example.com
 tasks:
 - name: latest httpd version installed
 yum:
 name: httpd
 state: latest
...
[student@controlnode imp-playdemo]$ ansible-playbook webserver.yml

PLAY [play to setup web server] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [latest httpd version installed] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

Note that the name set for each of your plays and tasks is displayed when the playbook is run.
(The Gathering Facts task is a special task that the setup module usually runs automatically
at the start of a play. This is covered later in the course.) For playbooks with multiple plays and
tasks, setting name attributes makes it easier to monitor the progress of a playbook's execution.

You should also see that the latest httpd version installed task is "changed" for
servera.lab.example.com. This means that the task changed something on that host to
ensure its specification was met. In this case, it means that the httpd probably wasn't installed or
wasn't the latest version.

In general, tasks in Ansible playbooks are idempotent, and it is safe to run the playbook multiple
times. If the targeted managed hosts are already in the correct state, no changes should be
made. For example, assume that the playbook from the previous example is run again:

[student@controlnode imp-playdemo]$ ansible-playbook webserver.yml

PLAY [play to setup web server] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [latest httpd version installed] **

Chapter 3. Implementing Playbooks

64 DO407-A2.3-en-2-20170725

ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=0 unreachable=0 failed=0

This time, all tasks passed with status ok and no changes were reported.

Syntax Verification

Prior to executing a playbook, it is good practice to perform a verification to ensure that the
syntax of its contents is correct. The ansible-playbook command offers a --syntax-check
option which can be used to verify the syntax of a playbook file. The following example shows the
successful syntax verification of a playbook.

[student@controlnode ~]$ ansible-playbook --syntax-check webserver.yml

playbook: webserver.yml

When syntax verification fails, a syntax error is reported. The output also includes the
approximate location of the syntax issue in the playbook. The following example shows the failed
syntax verification of a playbook where the space separator is missing after the name attribute
for the play.

[student@controlnode ~]$ ansible-playbook --syntax-check webserver.yml
ERROR! Syntax Error while loading YAML.

The error appears to have been in '/home/student/webserver.yml': line 3, column 8, but
 may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

- name:play to setup web server
 hosts: servera.lab.example.com
 ^ here

Executing a Dry Run

Another helpful option is the -C option. This causes Ansible to report what changes would have
occurred if the playbook were executed, but does not make any actual changes to managed
hosts.

The following example shows the dry run of a playbook containing a single task for ensuring that
the latest version of httpd package is installed on a managed host. Note that the dry run reports
that the task would effect a change on the managed host.

[student@controlnode ~]$ ansible-playbook -C webserver.yml

PLAY [play to setup web server] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [latest httpd version installed] **
changed: [servera.lab.example.com]

PLAY RECAP ***

Running Playbooks

DO407-A2.3-en-2-20170725 65

servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

References
ansible-playbook(1) man page

Intro to Playbooks — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_intro.html

Playbooks — Ansible Documentation
http://docs.ansible.com/ansible/playbooks.html

Check Mode ("Dry Run") — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_checkmode.html

http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks.html
http://docs.ansible.com/ansible/playbooks_checkmode.html

Chapter 3. Implementing Playbooks

66 DO407-A2.3-en-2-20170725

Guided Exercise: Writing and Running
Playbooks

In this exercise, you will write and run your first Ansible playbook.

Outcomes

You should be able to write a playbook using basic YAML syntax and Ansible playbook structure,
and successfully run it with the ansible-playbook command.

Before you begin

Log in as the student user on workstation and run lab basic setup. This
setup script ensures that the managed hosts, serverc.lab.example.com and
serverd.lab.example.com, are configured for the lab and are reachable on the network. It
also ensures that the correct Ansible configuration file and inventory are installed on the control
node.

[student@workstation ~]$ lab basic setup

A working directory, /home/student/basic-playbook, has been created on workstation
for the Ansible project. The directory has already been populated with an ansible.cfg
configuration file, and an inventory file, which defines a web group that includes both
managed hosts listed above as members.

In this directory, use a text editor to create a playbook named site.yml. This playbook contains
one play, which should target members of the web host group. The playbook should use tasks to
ensure that the following conditions are met on the managed hosts:

1. The httpd package is present, using the yum module.

2. The local files/index.html file is copied to /var/www/html/index.html on each
managed host, using the copy module.

3. The httpd service is started and enabled, using the service module.

You can use the ansible-doc command to help you understand the directives needed for each
of the modules.

After the playbook is written, verify its syntax and then use ansible-playbook to run the
playbook to implement the configuration.

Steps

1. To make all playbook exercises easier, if you use the Vim text editor you may want to use it
to edit your ~/.vimrc file (create it if necessary), to ensure it contains the following line:

autocmd FileType yaml setlocal ai ts=2 sw=2 et

This is optional, but it will set up the vim command so that the Tab key automatically
indents using two space characters for YAML files. This may make it easier for you to edit
Ansible playbooks.

2. Change directory to /home/student/basic-playbook.

DO407-A2.3-en-2-20170725 67

[student@workstation ~]$ cd ~/basic-playbook

3. Use a text editor to create a new playbook, /home/student/basic-playbook/
site.yml. Enter lines starting a play targeted at the hosts in the web host group.

3.1. Create and open ~/basic-playbook/site.yml. The first line of the file should be
three dashes to indicate the start of the playbook.

3.2. The next line starts the play. It needs to start with a dash and a space before the first
directive in the play. Name the play with an arbitrary string documenting what the play's
purpose is, using the name directive.

- name: Install and start Apache HTTPD

3.3. Add a hosts directive which runs the play on hosts in the inventory's web host group.
Make sure that the hosts directive is indented two spaces so it aligns with the name
directive above.

The complete site.yml file should now appear as follows:

- name: Install and start Apache HTTPD
 hosts: web

4. Continue to edit the /home/student/basic-playbook/site.yml file, and add a tasks
directive and the three tasks for your play that were specified in the instructions.

4.1. Add a tasks directive indented by two spaces (aligned with the hosts directive) to
start the list of tasks. Your file should now appear as follows:

- name: Install and start Apache HTTPD
 hosts: web

 tasks:

4.2. Add the first task. Indent by four spaces, and start the task with a dash and a space, and
then give the task a name, such as httpd package is present. The task should use
the yum module. The module directives should be indented two more spaces; set the
package name to httpd and the package state to present. The task should appear as
follows:

 - name: httpd package is present
 yum:
 name: httpd
 state: present

Chapter 3. Implementing Playbooks

68 DO407-A2.3-en-2-20170725

4.3. Add the second task. Match the format of the previous task, and give the task a name,
such as correct index.html is present. The task should use the copy module.
The module directives should set src to files/index.html and dest to /var/www/
html/index.html. The task should appear as follows:

 - name: correct index.html is present
 copy:
 src: files/index.html
 dest: /var/www/html/index.html

4.4. Add the third task to start and enable the httpd service. Match the format of the
previous two tasks, and give the new task a name, such as httpd is started. The
task should use the service module. The module directives should set the name of
the service to httpd, the state to started, and enabled to true. The task should
appear as follows:

 - name: httpd is started
 service:
 name: httpd
 state: started
 enabled: true

4.5. Your entire site.yml Ansible playbook should match the following example. Make sure
that the indentation of your play's directives, the list of tasks, and each task's directives
are all correct.

- name: Install and start Apache HTTPD
 hosts: web

 tasks:
 - name: httpd package is present
 yum:
 name: httpd
 state: present

 - name: correct index.html is present
 copy:
 src: files/index.html
 dest: /var/www/html/index.html

 - name: httpd is started
 service:
 name: httpd
 state: started
 enabled: true

Save the file and exit your text editor.

5. Before running your playbook, verify that its syntax is correct by running ansible-
playbook --syntax-check site.yml. If it reports any errors, correct them before
moving to the next step. You should see output similar to the following:

[student@workstation basic-playbook]$ ansible-playbook --syntax-check site.yml

DO407-A2.3-en-2-20170725 69

playbook: site.yml

6. Run your playbook. Read through the output generated to ensure that all tasks completed
successfully.

[student@workstation basic-playbook]$ ansible-playbook site.yml

PLAY [Install and start Apache HTTPD] **

TASK [Gathering Facts] ***
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

TASK [httpd package is present] **
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

TASK [correct index.html is present] ***
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

TASK [httpd is started] **
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

PLAY RECAP ***
serverc.lab.example.com : ok=4 changed=3 unreachable=0 failed=0
serverd.lab.example.com : ok=4 changed=3 unreachable=0 failed=0

7. If all went well, you should be able to run the playbook a second time and see all tasks
complete with no changes to the managed hosts.

[student@workstation basic-playbook]$ ansible-playbook site.yml

PLAY [Install and start Apache HTTPD] **

TASK [Gathering Facts] ***
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

TASK [httpd package is present] **
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

TASK [correct index.html is present] ***
ok: [serverc.lab.example.com]
ok: [serverd.lab.example.com]

TASK [httpd is started] **
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

PLAY RECAP ***
serverc.lab.example.com : ok=4 changed=0 unreachable=0 failed=0
serverd.lab.example.com : ok=4 changed=0 unreachable=0 failed=0

Chapter 3. Implementing Playbooks

70 DO407-A2.3-en-2-20170725

Implementing Multiple Plays

Objectives
After completing this section, students should be able to:

• Write a playbook that uses multiple plays and per-play privilege escalation.

• Effectively use ansible-doc to discover module parameters to use in tasks and to evaluate
how likely it is that a module's parameters will change.

Writing Multiple Plays
A playbook is a YAML file containing a list of one or more plays. Remember that a single play
is an ordered list of tasks to execute against hosts selected from the inventory. Therefore, if a
playbook contains multiple plays, each play may apply its tasks to a separate set of hosts.

This can be very useful when orchestrating a complex deployment which may involve different
tasks on different hosts. A playbook can be written that runs one play against one set of hosts,
and when that finishes runs another play against another set of hosts. (Of course, a second play
could also run against the same set of hosts, if that made sense for some reason.)

Writing a playbook that contains multiple plays is very straightforward. Each play in the playbook
is written as a top-level list item in the playbook. Each play is a list item containing the usual play
directives.

The following example shows a simple playbook with two plays. The first play runs against
web.example.com, and the second play runs against database.example.com.

This is a simple playbook with two plays

- name: first play
 hosts: web.example.com
 tasks:

 - name: first task
 yum:
 name: httpd
 status: present

 - name: second task
 service:
 name: httpd
 enabled: true

- name: second play
 hosts: database.example.com
 tasks:

 - name: first task
 service:
 name: mariadb
 enabled: true

Remote Users and Privilege Escalation in Plays

DO407-A2.3-en-2-20170725 71

Remote Users and Privilege Escalation in Plays
Plays can use different remote users or privilege escalation settings for a play than what is
specified by the defaults in the configuration file. These are set in the play itself at the same level
as the hosts or tasks directives.

User Attributes

Tasks in playbooks are normally executed through a network connection to the managed
hosts. As with ad hoc commands, the user account used for task execution depends on various
parameters in the Ansible configuration file, /etc/ansible/ansible.cfg. The user that runs
the tasks can be defined by the remote_user parameter. However, if privilege escalation is
enabled, other parameters such become_user can also have an impact.

If the remote user defined in the Ansible configuration for task execution is not suitable, it can be
overridden by using the remote_user attribute within a play.

remote_user: remoteuser

Privilege Escalation Attributes

Additional attributes are also available to define privilege escalation parameters from within a
playbook. The become Boolean parameter can be used to enable or disable privilege escalation
regardless of how it is defined in the Ansible configuration file. As usual, it can take yes or true
to enable privilege escalation, or no or false to disable it.

become: true

If privilege escalation is enabled, the become_method attribute can be used to define the
privilege escalation method to use during a specific play. The example below specifies that sudo
be used for privilege escalation.

become_method: sudo

Additionally, with privilege escalation enabled, the become_user attribute can define the user
account to use for privilege escalation within the context of a specific play.

become_user: privileged_user

The following example demonstrates the use of these directives in a play:

- name: /etc/hosts is up to date
 hosts: datacenter-west
 remote_user: automation
 become: yes

 tasks:
 - name: server.example.com in /etc/hosts
 lineinfile:
 path: /etc/hosts
 line: '192.0.2.42 server.example.com server'
 state: present

Chapter 3. Implementing Playbooks

72 DO407-A2.3-en-2-20170725

Finding Modules for Tasks

Module Documentation

The large number of modules packaged with Ansible provides administrators with many tools
for common administrative tasks. Earlier in this course, we discussed the Ansible documentation
website at http://docs.ansible.com. The module index on the website is an easy way to browse
the list of modules shipped with Ansible. For example, modules for user and service management
can be found under Systems Modules and modules for database administration can be found
under Database Modules.

For each module, the Ansible documentation website provides a summary of its functions and
instructions on how each specific function can be invoked with options to the module. The
documentation also provides useful examples that show you how to use each module and how to
set their parameters in a task.

You have already worked with the ansible-doc command to look up information about
modules installed on the local system. As a review, to see a list of the modules available on a
control node, run the ansible-doc -l command. This displays a list of module names and a
synopsis of their function.

[student@workstation modules]$ ansible-doc -l
a10_server Manage A10 Networks AX/SoftAX/Thunder/vThunder devices
a10_service_group Manage A10 Networks devices' service groups
a10_virtual_server Manage A10 Networks devices' virtual servers
acl Sets and retrieves file ACL information.
add_host add a host (and alternatively a group) to the ansible-
playbook in-memory inventory
airbrake_deployment Notify airbrake about app deployments
alternatives Manages alternative programs for common commands
apache2_module enables/disables a module of the Apache2 webserver
apk Manages apk packages
apt Manages apt-packages
...output omitted...

Detailed documentation on a specific module can be displayed by passing the module name to
ansible-doc. Like the Ansible documentation website, the command provides a synopsis of the
module's function, details of its various options, and examples. The following example shows the
documentation displayed for the yum module.

[student@workstation modules]$ ansible-doc yum
> YUM

 Installs, upgrade, removes, and lists packages and groups with the
 `yum' package manager.

Options (= is mandatory):

- conf_file
 The remote yum configuration file to use for the transaction.
 [Default: None]

- disable_gpg_check
 Whether to disable the GPG checking of signatures of packages
 being installed. Has an effect only if state is `present' or
 `latest'. (Choices: yes, no) [Default: no]

http://docs.ansible.com

Finding Modules for Tasks

DO407-A2.3-en-2-20170725 73

...output omitted...

EXAMPLES:
- name: install the latest version of Apache
 yum: name=httpd state=latest

- name: remove the Apache package
 yum: name=httpd state=absent

...output omitted...

Module Maintenance

Ansible ships with a large number of modules that can be used for many tasks. The upstream
community is very active, and these modules may be in different stages of development. The
ansible-doc documentation for the module is expected to specify who provides maintenance
for that module in the upstream Ansible community, and what its development status is. This is
indicated in the METADATA section at the end of the output of ansible-doc for that module.

The status field records the development status of the module:

• stableinterface: the module's parameters are stable, and every effort will be made not to
remove parameters or change their meaning.

• preview: the module is in technology preview, and might be unstable, its parameters
might change, or it might require libraries or web services that are themselves subject to
incompatible changes.

• deprecated: the module is deprecated, and will no longer be available in some future release.

• removed: the module has been removed from the release, but a stub exists for documentation
purposes to help former users migrate to new modules.

Note
The stableinterface status only indicates that a module's interface is stable, it
does not rate the module's code quality.

The supported_by field records who maintains the module in the upstream Ansible community.
Possible values are:

• core: maintained by the "core" Ansible developers upstream, and always included with
Ansible.

• curated: modules submitted and maintained by partners or companies in the community.
Maintainers of these modules must watch for any issues reported or pull requests raised
against the module. Upstream "core" developers review proposed changes to curated modules
after the community maintainers have approved the changes. Core committers also ensure
any issues with these modules due to changes in the Ansible engine are remediated. These
modules are currently included with Ansible, but might be packaged separately at some point
in the future.

• community: modules not supported by the core upstream developers or partners/companies,
but maintained entirely by the general open source community. Modules in this category are
still fully usable, but the response rate to issues is purely up to the community. These modules

Chapter 3. Implementing Playbooks

74 DO407-A2.3-en-2-20170725

are also currently included with Ansible, but will probably be packaged separately at some
point in the future.

The upstream Ansible community has an issue tracker for Ansible and its integrated modules at
https://github.com/ansible/ansible/issues.

Sometimes, a module doesn't exist for something you want to do. As an end user, you can also
write your own private modules, or get modules from a third party. Ansible searches for custom
modules in the location specified by the ANSIBLE_LIBRARY environment variable, or if that's
not set, by a library directive in the current Ansible configuration file. Ansible also searches
for custom modules in the ./library directory relative to the playbook currently being run.

library = /usr/share/my_modules

Information on writing modules is beyond the scope of this course. Documentation on how to do
this is available at http://docs.ansible.com/ansible/developing_modules.html.

Important
Use ansible-doc to find and learn how to use modules for your tasks.

When possible, try to avoid the command, shell, and raw modules in playbooks, even
though they might seem simple to use. Because these take arbitrary commands, it is
very easy to write non-idempotent playbooks with these modules.

For example, the following task using the shell module is not idempotent. Every time
the play is run, it rewrites /etc/resolv.conf even if it already consists of the line
"nameserver 192.0.2.1".

- name: Non-idempotent approach with shell module
 shell: echo "nameserver 192.0.2.1" > /etc/resolv.conf

There are several ways to write tasks using the shell module in an idempotent
manner, and sometimes making those changes and using shell is the best approach.
But a quicker solution may be to use ansible-doc to discover the copy module and
use that to get the desired effect.

The following example does not rewrite the /etc/resolv.conf file if it already
consists of the correct content:

- name: Idempotent approach with copy module
 copy:
 dest: /etc/resolv.conf
 content: "nameserver 192.0.2.1\n"

The copy module is special-purpose and can easily test to see if the state has already
been met, and if so, it makes no changes. The shell module allows a lot of flexibility,
but also requires more attention to ensure that it runs in an idempotent way.

Idempotent playbooks can be run repeatedly to ensure systems are in a particular state
without disrupting those systems if they already are.

https://github.com/ansible/ansible/issues
http://docs.ansible.com/ansible/developing_modules.html

Playbook Syntax Variations

DO407-A2.3-en-2-20170725 75

Playbook Syntax Variations
In the last part of this chapter, we'll look at some variations of YAML or Ansible Playbook syntax
that you might encounter.

YAML Comments

Comments can also be used to aid readability. In YAML, everything to the right of the number or
hash symbol (#) is a comment. If there is content to the left of the comment, precede the number
symbol with a space.

This is a YAML comment

some data # This is also a YAML comment

YAML Strings

Strings in YAML do not normally need to be put in quotation marks even if there are spaces
contained in the string. If desired, strings can be enclosed in either double-quotes or single-
quotes.

this is a string

'this is another string'

"this is yet another a string"

There are two ways to write multi-line strings. One way uses the vertical bar (|) character to
denote that newline characters within the string are to be preserved.

include_newlines: |
 Example Company
 123 Main Street
 Atlanta, GA 30303

The other way to write multi-line strings uses the greater-than (>) character to indicate that
newline characters are to be converted to spaces and that leading white spaces in the lines are to
be removed. This method is often used to break long strings at space characters so that they can
span multiple lines for better readability.

fold_newlines: >
 This is
 a very long,
 long, long, long
 sentence.

YAML Dictionaries

You've seen collections of key-value pairs written as an indented block, as follows:

 name: svcrole
 svcservice: httpd
 svcport: 80

Chapter 3. Implementing Playbooks

76 DO407-A2.3-en-2-20170725

Dictionaries can also be written in an inline block format enclosed in curly braces, as follows:

 {name: svcrole, svcservice: httpd, svcport: 80}

In most cases the inline block format should be avoided because it is harder to read. However,
there is at least one situation in which it is more commonly used. Later in the course, we will
discuss roles. When a playbook is including a list of roles, it is more common to use this syntax
in order to make it easier to distinguish roles being included in a play from the variables being
passed to a role.

YAML Lists

You've also seen lists written with the normal single dash syntax:

 hosts:
 - servera
 - serverb
 - serverc

Lists also have an inline format enclosed in square braces that looks like this:

hosts: [servera, serverb, serverc]

This should almost always be avoided because it's usually harder to read.

Obsolete key=value Playbook Shorthand

Some playbooks might use an older shorthand method to define tasks by putting the key-value
pairs for the module on the same line as the module name. For example, you might see this
syntax:

 tasks:
 - name: shorthand form
 service: name=httpd enabled=true state=started

Normally you'd write the same task like this:

 tasks:
 - name: normal form
 service:
 name: httpd
 enabled: true
 state: started

You should generally avoid the shorthand form and use the normal form.

The normal form has more lines, but it's easier to work with. The task's parameters are stacked
vertically and easier to tell apart. Your eyes can run straight down the play with less left-to-right
motion. Also, the normal syntax is native YAML, while the shorthand is not. Syntax highlighting
tools in modern text editors can help you more effectively if you use the normal format than if
you use the shorthand format.

However, you might run across this syntax in documentation and older playbooks from other
people, and the syntax does still function.

Playbook Syntax Variations

DO407-A2.3-en-2-20170725 77

References
ansible-playbook(1) and ansible-doc(1) man pages

Intro to Playbooks — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_intro.html

Playbooks — Ansible Documentation
http://docs.ansible.com/ansible/playbooks.html

Developing Modules — Ansible Documentation
http://docs.ansible.com/ansible/developing_modules.html

Module Support — Ansible Documentation
http://docs.ansible.com/ansible/modules_support.html

http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks.html
http://docs.ansible.com/ansible/developing_modules.html
http://docs.ansible.com/ansible/modules_support.html

Chapter 3. Implementing Playbooks

78 DO407-A2.3-en-2-20170725

Guided Exercise: Implementing Multiple Plays

In this exercise, you will write and use an Ansible playbook to perform administration tasks on a
managed host.

Outcomes

You should be able to construct and execute a playbook to manage configuration and perform
administration on a managed host.

Before you begin

Log in as the student user on workstation and run lab playbook setup. This setup script
ensures that the managed host, servera, is reachable on the network. It also ensures that the
correct Ansible configuration file and inventory are installed on the control node.

[student@workstation ~]$ lab playbook setup

A developer responsible for your company's intranet web site has asked you to write a playbook
to help automate the setup of the server environment on servera.lab.example.com.

A working directory, /home/student/imp-playbook, has been created on
workstation for the Ansible project. The directory has already been populated with an
ansible.cfg configuration file and an inventory inventory file. The managed host,
servera.lab.example.com, is already defined in this inventory file.

In this directory, create a playbook named intranet.yml which contains two plays. The first
play requires privilege escalation and must perform the following tasks in the specified order:

1. Use the yum module to ensure that the latest versions of the httpd and firewalld packages
are installed.

2. Ensure the firewalld service is enabled and started.

3. Ensure that firewalld is configured to allow connections to the httpd service.

4. Ensure that the httpd service is enabled and started.

5. Ensure that the managed host's /var/www/html/index.html file consists of the content
"Welcome to the example.com intranet!".

The second play does not require privilege escalation and should run a single task using the uri
module to confirm that the URL http://servera.lab.example.com returns an HTTP status
code of 200.

Following recommended practices, plays and tasks should have names that document their
purpose, but this is not required. The example solution names plays and tasks.

Don't forget that you can use the ansible-doc command to get help with finding and using the
modules for your tasks.

After the playbook is written, verify its syntax and then execute the playbook to implement the
configuration. Verify your work by executing lab playbook grade.

Steps

1. Change to the working directory, /home/student/imp-playbook.

DO407-A2.3-en-2-20170725 79

[student@workstation ~] cd /home/student/imp-playbook

2. Create a new playbook, /home/student/imp-playbook/intranet.yml, and
add the lines needed to start the first play. It should target the managed host
servera.lab.example.com and enable privilege escalation.

2.1. Create and open a new playbook, /home/student/imp-playbook/intranet.yml,
and add a line consisting of three dashes to the beginning of the file to indicate the start
of the YAML file.

2.2. Add the following line to the /home/student/imp-playbook/intranet.yml file to
denote the start of a play with a name of Enable intranet services.

- name: Enable intranet services

2.3. Add the following line to the /home/student/imp-playbook/intranet.yml file to
indicate that the play applies to the servera managed host. Be sure to indent the line
with two spaces (aligning with the name directive above it) to indicate that it is part of
the first play.

 hosts: servera.lab.example.com

2.4. Add the following line to the /home/student/imp-playbook/intranet.yml file to
enable privilege escalation. Be sure to indent the line with two spaces (aligning with the
directives above it) to indicate it is part of the first play.

 become: yes

3. Add the following line to the /home/student/imp-playbook/intranet.yml file to
define the beginning of the tasks list. Indent the line with two spaces (aligning with the
directives above it) to indicate that it is part of the first play.

 tasks:

4. As the first task in the first play, define a task that makes sure that the httpd and firewalld
packages are up to date.

4.1. Under the tasks directive in the first play, add the following lines to the /home/
student/imp-playbook/intranet.yml file. This creates the task that ensures that
the latest versions of the httpd and firewalld packages are installed.

Be sure to indent the first line of the task with four spaces, a dash, and a space. This
indicates that the task is an item in the tasks list for the first play.

The first line provides a descriptive name for the task. The second line is indented with
six spaces and calls the yum module. The next line is indented eight spaces and is a

Chapter 3. Implementing Playbooks

80 DO407-A2.3-en-2-20170725

name directive. It tells the yum module which packages it should ensure are up-to-date.
The yum module's name directive (which is different from the task's name) can take a
list of packages, which is indented ten spaces on the two following lines. After the list,
the eight space indented state directive tells the yum module the latest version of the
packages should be installed.

 - name: latest version of httpd and firewalld installed
 yum:
 name:
 - httpd
 - firewalld
 state: latest

5. Define two more tasks in the play to ensure that firewalld is running and will start on
boot, and will allow connections to the http service.

5.1. Add the following lines to the /home/student/imp-playbook/intranet.yml file
to create the task for ensuring that the firewalld service is enabled and running. Be
sure to indent the line with four spaces, a dash, and a space. This indicates that the task
is contained by the play and that it is an item in the tasks list.

The first entry provides a descriptive name for the task. The second entry is indented
with eight spaces and calls the service module. The remaining entries are indented
with ten spaces and pass the necessary arguments to ensure that the firewalld service is
enabled and started.

 - name: firewalld enabled and running
 service:
 name: firewalld
 enabled: true
 state: started

5.2. Add the following lines to the /home/student/imp-playbook/intranet.yml file
to create the task to ensure firewalld opens the HTTP service to remote systems. Be
sure to indent the line with four spaces, a dash, and a space. This indicates that the task
is contained by the play and that it is an item in the tasks list.

The first entry provides a descriptive name for the task. The second entry is indented
with six spaces and calls the firewalld module. The remaining entries are indented
with eight spaces and pass the necessary arguments to ensure that access to the HTTP
service is permanently allowed.

 - name: firewalld permits http service
 firewalld:
 service: http
 permanent: true
 state: enabled
 immediate: yes

6. Add another task to the first play's list that ensures that the httpd service is running and
will start at boot.

DO407-A2.3-en-2-20170725 81

6.1. Add the following lines to the /home/student/imp-playbook/intranet.yml file
to create the task to ensure the httpd service is enabled and running. Be sure to indent
the line with four spaces, a dash, and a space. This indicates that the task is contained
by the play and that it is an item in the tasks list.

The first entry provides a descriptive name for the task. The second entry is indented
with six spaces and calls the service module. The remaining entries are indented
with eight spaces and pass the necessary arguments to ensure that the httpd service is
enabled and running.

 - name: httpd enabled and running
 service:
 name: httpd
 enabled: true
 state: started

7. Add a final task to the first play's list that ensures that the correct content is in /var/www/
html/index.html.

7.1. Add the following lines to the /home/student/imp-playbook/intranet.yml file to
create the task that confirms the /var/www/html/index.html file is populated with
the correct content. Be sure to indent the line with four spaces, a dash, and a space.
This indicates that the task is contained by the play and that it is an item in the tasks
list.

The first entry provides a descriptive name for the task. The second entry is indented
with six spaces and calls the copy module. The remaining entries are indented with
eight spaces and pass the necessary arguments to ensure that the right content is in
the web page.

 - name: test html page is installed
 copy:
 content: "Welcome to the example.com intranet!\n"
 dest: /var/www/html/index.html

8. In /home/student/imp-playbook/intranet.yml, define a second play targeted at
localhost which will test the intranet web server. It does not need privilege escalation.

8.1. Add the following line to the /home/student/imp-playbook/intranet.yml file to
denote the start of a second play.

- name: Test intranet web server

8.2. Add the following line to the /home/student/imp-playbook/intranet.yml file to
indicate that the play applies to the localhost managed host. Be sure to indent the
line with two spaces to indicate that it is contained by the second play.

 hosts: localhost

Chapter 3. Implementing Playbooks

82 DO407-A2.3-en-2-20170725

8.3. Add the following line to the /home/student/imp-playbook/intranet.yml file
to disable privilege escalation. Be sure to align the indentation of the become directive
with the hosts directive above it.

 become: no

9. Add the following line to the /home/student/imp-playbook/intranet.yml file to
define the beginning of the tasks list. Be sure to indent the line with two spaces to indicate
that it is contained by the second play.

 tasks:

10. Add a single task to the second play which uses the uri module to contact http://
servera.lab.example.com and return successfully if the HTTP status code is 200.

10.1. Add the following lines to the /home/student/imp-playbook/intranet.yml file to
create the task for verifying web services from the control node. Be sure to indent the
first line with four spaces, a dash, and a space. This indicates that the task is an item in
the second play's tasks list.

The first line provides a descriptive name for the task. The second line is indented with
six spaces and calls the uri module. The remaining lines are indented with eight spaces
and pass the necessary arguments to execute a query for web content from the control
node to the managed host and verify the status code received.

 - name: connect to intranet web server
 uri:
 url: http://servera.lab.example.com
 status_code: 200

11. Look at the final /home/student/imp-playbook/intranet.yml playbook and verify
that it has the following structured content. Save the file.

- name: Enable intranet services
 hosts: servera.lab.example.com
 become: yes

 tasks:
 - name: latest version of httpd and firewalld installed
 yum:
 name:
 - httpd
 - firewalld
 state: latest

 - name: firewalld enabled and running
 service:
 name: firewalld
 enabled: true
 state: started

 - name: firewalld permits http service
 firewalld:

DO407-A2.3-en-2-20170725 83

 service: http
 permanent: true
 state: enabled
 immediate: yes

 - name: httpd enabled and running
 service:
 name: httpd
 enabled: true
 state: started

 - name: test html page is installed
 copy:
 content: "Welcome to the example.com intranet!\n"
 dest: /var/www/html/index.html

- name: Test intranet web server
 hosts: localhost
 become: no

 tasks:
 - name: connect to intranet web server
 uri:
 url: http://servera.lab.example.com
 status_code: 200

12. Verify the syntax of the intranet.yml playbook by executing the ansible-playbook
command with the --syntax-check option.

[student@workstation imp-playbook]$ ansible-playbook --syntax-check intranet.yml

playbook: intranet.yml

13. Execute the playbook. Read through the output generated to ensure that all tasks completed
successfully.

[student@workstation imp-playbook]$ ansible-playbook intranet.yml

PLAY [Enable intranet services] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [latest version of httpd and firewalld installed] *************************
changed: [servera.lab.example.com]

TASK [firewalld enabled and running] ***
ok: [servera.lab.example.com]

TASK [firewalld permits http service] **
changed: [servera.lab.example.com]

TASK [httpd enabled and running] ***
changed: [servera.lab.example.com]

TASK [test html page is installed] ***
changed: [servera.lab.example.com]

PLAY [Test intranet web server] **

Chapter 3. Implementing Playbooks

84 DO407-A2.3-en-2-20170725

TASK [Gathering Facts] ***
ok: [localhost]

TASK [connect to intranet web server] **
ok: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=0 unreachable=0 failed=0
servera.lab.example.com : ok=6 changed=4 unreachable=0 failed=0

14. Run lab playbook grade on workstation to grade your work.

[student@workstation imp-playbook]$ lab playbook grade

Lab: Implementing Playbooks

DO407-A2.3-en-2-20170725 85

Lab: Implementing Playbooks

In this lab, you will configure and perform administrative tasks on managed hosts using a
playbook.

Outcomes

You should be able to construct and execute a playbook to install, configure, and verify the status
of web and database services on a managed host.

Before you begin

Log in as the student user on workstation and run lab playbookinternet setup. This
setup script ensures that the managed host, serverb.lab.example.com, is reachable on the
network. It also ensures that the correct Ansible configuration file and inventory are installed on
the control node.

[student@workstation ~]$ lab playbookinternet setup

A developer responsible for the company's Internet website has asked you to write an Ansible
playbook to automate the setup of his server environment on serverb.lab.example.com.

A working directory, /home/student/imp-lab, has been created on workstation for the
Ansible project. The directory has already been populated with an ansible.cfg configuration
file and an inventory inventory file. The managed host, serverb.lab.example.com, is
already defined in this inventory file.

In this directory, create a playbook named internet.yml, which will contain two plays. The first
play will require privilege escalation and must perform the following tasks in the specified order:

1. Use the yum module to ensure the latest versions of the following packages are installed:
firewalld, httpd, php, php-mysql, and mariadb-server.

2. Ensure the firewalld service is enabled and started.

3. Ensure that firewalld is configured to allow connections to the ports used by the httpd
service.

4. Ensure that the httpd service is enabled and started.

5. Ensure that the mariadb service is enabled and started.

6. Use the get_url module to ensure that the content at the URL http://
materials.example.com/grading/var/www/html/index.php has been installed as
the file /var/www/html/index.php on the managed host.

The second play does not require privilege escalation and should run a single task using the
uri module to confirm that the URL http://serverb.lab.example.com/ returns an HTTP
status code of 200.

Following recommended practices, plays and tasks should have names that document their
purpose, but this is not required. The example solution names plays and tasks.

Don't forget that you can use the ansible-doc command to get help with finding and using the
modules for your tasks.

Chapter 3. Implementing Playbooks

86 DO407-A2.3-en-2-20170725

After the playbook is written, verify its syntax and then execute the playbook to implement the
configuration. Verify your work by executing lab playbookinternet grade.

Note
The playbook used by this lab is very similar to the one you wrote in the preceding
guided exercise in this chapter. If you don't want to create this lab's playbook from
scratch, you can use that exercise's playbook as a starting point for this lab.

If you do, be careful to target the correct hosts and change the tasks to match the
instructions for this exercise.

Steps

1. Change to the working directory, /home/student/imp-lab.

2. Create a new playbook, /home/student/imp-lab/internet.yml, and add the
necessary entries to start a first play named "Enable internet services" and specify
its intended managed host, serverb.lab.example.com. Also add an entry to enable
privilege escalation.

3. Add the necessary entries to the /home/student/imp-lab/internet.yml file to define
the tasks in the first play for configuring the managed host.

4. In /home/student/imp-lab/internet.yml, define another play for the task to be
performed on the control node to test access to the web server that should be running on
the serverb managed host. This play does not require privilege escalation.

5. Verify the syntax of the internet.yml playbook by using the ansible-playbook
command.

6. Use ansible-playbook to run the playbook. Read through the output generated to ensure
that all tasks completed successfully.

7. Run lab playbookinternet grade on workstation to grade your work.

[student@workstation imp-lab]$ lab playbookinternet grade

Solution

DO407-A2.3-en-2-20170725 87

Solution

In this lab, you will configure and perform administrative tasks on managed hosts using a
playbook.

Outcomes

You should be able to construct and execute a playbook to install, configure, and verify the status
of web and database services on a managed host.

Before you begin

Log in as the student user on workstation and run lab playbookinternet setup. This
setup script ensures that the managed host, serverb.lab.example.com, is reachable on the
network. It also ensures that the correct Ansible configuration file and inventory are installed on
the control node.

[student@workstation ~]$ lab playbookinternet setup

A developer responsible for the company's Internet website has asked you to write an Ansible
playbook to automate the setup of his server environment on serverb.lab.example.com.

A working directory, /home/student/imp-lab, has been created on workstation for the
Ansible project. The directory has already been populated with an ansible.cfg configuration
file and an inventory inventory file. The managed host, serverb.lab.example.com, is
already defined in this inventory file.

In this directory, create a playbook named internet.yml, which will contain two plays. The first
play will require privilege escalation and must perform the following tasks in the specified order:

1. Use the yum module to ensure the latest versions of the following packages are installed:
firewalld, httpd, php, php-mysql, and mariadb-server.

2. Ensure the firewalld service is enabled and started.

3. Ensure that firewalld is configured to allow connections to the ports used by the httpd
service.

4. Ensure that the httpd service is enabled and started.

5. Ensure that the mariadb service is enabled and started.

6. Use the get_url module to ensure that the content at the URL http://
materials.example.com/grading/var/www/html/index.php has been installed as
the file /var/www/html/index.php on the managed host.

The second play does not require privilege escalation and should run a single task using the
uri module to confirm that the URL http://serverb.lab.example.com/ returns an HTTP
status code of 200.

Following recommended practices, plays and tasks should have names that document their
purpose, but this is not required. The example solution names plays and tasks.

Don't forget that you can use the ansible-doc command to get help with finding and using the
modules for your tasks.

Chapter 3. Implementing Playbooks

88 DO407-A2.3-en-2-20170725

After the playbook is written, verify its syntax and then execute the playbook to implement the
configuration. Verify your work by executing lab playbookinternet grade.

Note
The playbook used by this lab is very similar to the one you wrote in the preceding
guided exercise in this chapter. If you don't want to create this lab's playbook from
scratch, you can use that exercise's playbook as a starting point for this lab.

If you do, be careful to target the correct hosts and change the tasks to match the
instructions for this exercise.

Steps

1. Change to the working directory, /home/student/imp-lab.

[student@workstation ~] cd /home/student/imp-lab

2. Create a new playbook, /home/student/imp-lab/internet.yml, and add the
necessary entries to start a first play named "Enable internet services" and specify
its intended managed host, serverb.lab.example.com. Also add an entry to enable
privilege escalation.

2.1. Add the following entry to the beginning of /home/student/imp-lab/
internet.yml to begin the YAML format.

2.2. Add the following entry to the /home/student/imp-lab/internet.yml file to
denote the start of a play with a name of Enable internet services.

- name: Enable internet services

2.3. Add the following entry to the /home/student/imp-lab/internet.yml file to
indicate that the play applies to the serverb managed host. Be sure to indent the entry
with two spaces to indicate that it is contained by the play.

 hosts: serverb.lab.example.com

2.4. Add the following entry to the /home/student/imp-lab/internet.yml file to
enable privilege escalation. Be sure to indent the entry with two spaces to indicate that
it is contained by the play.

 become: yes

3. Add the necessary entries to the /home/student/imp-lab/internet.yml file to define
the tasks in the first play for configuring the managed host.

Solution

DO407-A2.3-en-2-20170725 89

3.1. Add the following entry to the /home/student/imp-lab/internet.yml file to
define the beginning of the tasks list. Be sure to indent the entry with two spaces to
indicate that it is contained by the play.

 tasks:

3.2. Add the following entry to the /home/student/imp-lab/internet.yml file to
create a new task that ensures that the latest versions of the necessary packages are
installed.

 - name: latest version of all required packages installed
 yum:
 name:
 - firewalld
 - httpd
 - mariadb-server
 - php
 - php-mysql
 state: latest

3.3. Add the necessary entries to the /home/student/imp-lab/internet.yml file to
define the firewall configuration task.

 - name: firewalld enabled and running
 service:
 name: firewalld
 enabled: true
 state: started

 - name: firewalld permits http service
 firewalld:
 service: http
 permanent: true
 state: enabled
 immediate: yes

3.4. Add the necessary entries to the /home/student/imp-lab/internet.yml file to
define the service management tasks.

 - name: httpd enabled and running
 service:
 name: httpd
 enabled: true
 state: started

 - name: mariadb enabled and running
 service:
 name: mariadb
 enabled: true
 state: started

3.5. Add the necessary entries to the /home/student/imp-lab/internet.yml file to
define the final task for generating web content for testing.

Chapter 3. Implementing Playbooks

90 DO407-A2.3-en-2-20170725

 - name: test php page is installed
 get_url:
 url: "http://materials.example.com/grading/var/www/html/index.php"
 dest: /var/www/html/index.php
 mode: 0644

4. In /home/student/imp-lab/internet.yml, define another play for the task to be
performed on the control node to test access to the web server that should be running on
the serverb managed host. This play does not require privilege escalation.

4.1. Add the following entry to the /home/student/imp-lab/internet.yml file to
denote the start of a second play with a name of Test internet web server.

- name: Test internet web server

4.2. Add the following entry to the /home/student/imp-lab/internet.yml file to
indicate that the play applies to the localhost managed host. Be sure to indent the
entry with two spaces to indicate that it is contained by the play.

 hosts: localhost

4.3. Add the following line after the hosts directive to disable privilege escalation for the
second play. Match the indentation of the hosts line for the play.

 become: no

4.4. Add an entry to the /home/student/imp-lab/internet.yml file to define the
beginning of the tasks list. Be sure to indent the entry with two spaces to indicate that
it is contained by the play.

 tasks:

4.5. Add the following lines to the /home/student/imp-lab/internet.yml file to
create the task for verifying the managed host's web services from the control node.

 - name: connect to internet web server
 uri:
 url: http://serverb.lab.example.com
 status_code: 200

5. Verify the syntax of the internet.yml playbook by using the ansible-playbook
command.

[student@workstation imp-lab]$ cat internet.yml

- name: Enable internet services
 hosts: serverb.lab.example.com
 become: yes

 tasks:

Solution

DO407-A2.3-en-2-20170725 91

 - name: latest version of all required packages installed
 yum:
 name:
 - firewalld
 - httpd
 - mariadb-server
 - php
 - php-mysql
 state: latest

 - name: firewalld enabled and running
 service:
 name: firewalld
 enabled: true
 state: started

 - name: firewalld permits http service
 firewalld:
 service: http
 permanent: true
 state: enabled
 immediate: yes

 - name: httpd enabled and running
 service:
 name: httpd
 enabled: true
 state: started

 - name: mariadb enabled and running
 service:
 name: mariadb
 enabled: true
 state: started

 - name: test php page is installed
 get_url:
 url: "http://materials.example.com/grading/var/www/html/index.php"
 dest: /var/www/html/index.php
 mode: 0644

- name: Test internet web server
 hosts: localhost
 become: no

 tasks:
 - name: connect to internet web server
 uri:
 url: http://serverb.lab.example.com
 status_code: 200

[student@workstation imp-lab]$ ansible-playbook --syntax-check internet.yml

playbook: internet.yml

6. Use ansible-playbook to run the playbook. Read through the output generated to ensure
that all tasks completed successfully.

[student@workstation imp-lab]$ ansible-playbook internet.yml
PLAY [Enable internet services] **

TASK [Gathering Facts] ***

Chapter 3. Implementing Playbooks

92 DO407-A2.3-en-2-20170725

ok: [serverb.lab.example.com]

TASK [latest version of all required packages installed] ***********************
changed: [serverb.lab.example.com]

TASK [firewalld enabled and running] ***
ok: [serverb.lab.example.com]

TASK [firewalld permits http service] **
changed: [serverb.lab.example.com]

TASK [httpd enabled and running] ***
changed: [serverb.lab.example.com]

TASK [mariadb enabled and running] ***
changed: [serverb.lab.example.com]

TASK [test php page installed] ***
changed: [serverb.lab.example.com]

PLAY [Test internet web server] **

TASK [Gathering Facts] ***
ok: [localhost]

TASK [connect to internet web server] **
ok: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=0 unreachable=0 failed=0
serverb.lab.example.com : ok=7 changed=5 unreachable=0 failed=0

7. Run lab playbookinternet grade on workstation to grade your work.

[student@workstation imp-lab]$ lab playbookinternet grade

Summary

DO407-A2.3-en-2-20170725 93

Summary

In this chapter, you learned:

• A play is an ordered list of tasks, which should be run against hosts selected from the
inventory.

• A playbook is a text file that contains a list of one or more plays to run in order.

• Ansible playbooks are written in YAML format.

• YAML files are structured using space indentation to represent data hierarchy.

• Tasks are implemented using standardized code packaged as Ansible modules.

• The ansible-doc command can list installed modules, and provide documentation and
example code snippets of how to use them in playbooks.

• The ansible-playbook command is used to verify playbook syntax and run playbooks.

94

DO407-A2.3-en-2-20170725 95

TRAINING

CHAPTER 4

MANAGING VARIABLES AND
INCLUSIONS

Overview

Goal To describe variable scope and precedence, manage
variables and facts in a play, and manage inclusions.

Objectives • Manage variables in Ansible projects

• Manage Facts in Playbooks

• Include variables and tasks from external files into a
playbook

Sections • Managing Variables (and Guided Exercise)

• Managing Facts (and Guided Exercise)

• Managing Inclusions (and Guided Exercise)

Lab • Lab: Managing Variables and Inclusions

Chapter 4. Managing Variables and Inclusions

96 DO407-A2.3-en-2-20170725

Managing Variables

Objectives
After completing this section, students should be able to:

• Manage variables in Ansible projects

Introduction to Ansible Variables
Ansible supports variables that can be used to store values that can be reused throughout files
in an entire Ansible project. This can help simplify creation and maintenance of a project and
reduce the incidence of errors.

Variables provide a convenient way to manage dynamic values for a given environment in your
Ansible project. Some examples of values that variables might contain include

• Users to create

• Packages to install

• Services to restart

• Files to remove

• Archives to retrieve from the Internet

Naming Variables
Variables have names which consist of a string that must start with a letter and can only contain
letters, numbers, and underscores.

Consider the following table that shows the difference between invalid and valid variable names:

Ansible variable names

Invalid variable names Valid variable names

web server web_server

remote.file remote_file

1st file file_1 or file1

remoteserver$1 remote_server_1 or remote_server1

Defining Variables
Variables can be defined in a bewildering variety of places in an Ansible project. However, this
can be simplified to three basic scope levels:

• Global scope: Variables set from the command line or Ansible configuration

• Play scope: Variables set in the play and related structures

• Host scope: Variables set on host groups and individual hosts by the inventory, fact gathering,
or registered tasks

Variables in Playbooks

DO407-A2.3-en-2-20170725 97

If the same variable name is defined at more than one level, the higher wins. So variables defined
by the inventory are overridden by variables defined by the playbook, which are overridden by
variables defined on the command line.

A detailed discussion of variable precedence is available in the Ansible documentation, a link to
which is provided in the References at the end of this section.

Variables in Playbooks

Defining Variables in Playbooks

When writing playbooks, administrators can use their own variables and call them in a task. For
example, a variable web_package can be defined with a value of httpd and called by the yum
module in order to install the httpd package.

Playbook variables can be defined in multiple ways. One of the simplest is to place it in a vars
block at the beginning of a playbook:

- hosts: all
 vars:
 user: joe
 home: /home/joe

It is also possible to define playbook variables in external files. In this case, instead of using vars,
the vars_files directive may be used, followed by a list of external variable files relative to the
playbook that should be read:

- hosts: all
 vars_files:
 - vars/users.yml

The playbook variables are then defined in that file or those files in YAML format:

user: joe
home: /home/joe

Using Variables in Playbooks

Once variables have been declared, administrators can use the variables in tasks. Variables are
referenced by placing the variable name in double curly braces. Ansible substitutes the variable
with its value when the task is executed.

vars:
 user: joe

tasks:
 # This line will read: Creates the user joe
 - name: Creates the user {{ user }}
 user:
 # This line will create the user named Joe
 name: "{{ user }}"

Chapter 4. Managing Variables and Inclusions

98 DO407-A2.3-en-2-20170725

Important
When a variable is used as the first element to start a value, quotes are mandatory.
This prevents Ansible from considering the variable as starting a YAML dictionary. The
following message appears if quotes are missing:

yum:
 name: {{ service}}
 ^ here
We could be wrong, but this one looks like it might be an issue with
missing quotes. Always quote template expression brackets when they
start a value. For instance:

 with_items:
 - {{ foo }}

Should be written as:

 with_items:
 - "{{ foo }}"

Host Variables and Group Variables
Inventory variables that apply directly to hosts fall into two broad categories: host variables that
apply to a specific host, and group variables that apply to all hosts in a host group or in a group
of host groups. Host variables take precedence over group variables, but variables defined by a
playbook take precedence over both.

One way to define host variables and group variables is to do it directly in the inventory file. This
is an older approach and not preferred, but may be encountered by users:

• This is a host variable, ansible_user, being defined for the host demo.example.com.

[servers]
demo.example.com ansible_user=joe

• In this example, a group variable user is being defined for the group servers.

[servers]
demo1.example.com
demo2.example.com

[servers:vars]
user=joe

• Finally, in this example a group variable user is being defined for the group servers, which
happens to consist of two host groups each with two servers.

[servers1]
demo1.example.com
demo2.example.com

[servers2]
demo3.example.com

Host Variables and Group Variables

DO407-A2.3-en-2-20170725 99

demo4.example.com

[servers:children]
servers1
servers2

[servers:vars]
user=joe

Among the disadvantages of this approach, it makes the inventory file more difficult to work
with, mixes information about hosts and variables in the same file, and uses an obsolete syntax.

Using group_vars and host_vars Directories

The preferred approach is to create two directories in the same working directory as the
inventory file or directory, group_vars and host_vars. These directories contain files defining
group variables and host variables, respectively.

Important
The recommended practice is to define inventory variables using host_vars and
group_vars directories, and not to define them directly in the inventory file or files.

To define group variables for the group servers, a YAML file named group_vars/servers
would be created, and then the contents of that file would set variables to values using the same
syntax as a playbook:

user: joe

Likewise, to define host variables for a particular host, a file with a name matching the host is
created in host_vars to contain the host variables.

The following examples illustrate this approach in more detail. Consider the following scenario
where there are two data centers to manage that has the following inventory file in ~/project/
inventory:

[admin@station project]$ cat ~/project/inventory
[datacenter1]
demo1.example.com
demo2.example.com

[datacenter2]
demo3.example.com
demo4.example.com

[datacenters:children]
datacenter1
datacenter2

• If a general value needs to be defined for all servers in both datacenters, a group variable can
be set for datacenters:

[admin@station project]$ cat ~/project/group_vars/datacenters
package: httpd

Chapter 4. Managing Variables and Inclusions

100 DO407-A2.3-en-2-20170725

• If the value to define varies for each datacenter, a group variable can be set for each
datacenter:

[admin@station project]$ cat ~/project/group_vars/datacenter1
package: httpd
[admin@station project]$ cat ~/project/group_vars/datacenter2
package: apache

• If the value to be defined varies for each host in every datacenter, using host variables is
recommended:

[admin@station project]$ cat ~/project/host_vars/demo1.example.com
package: httpd
[admin@station project]$ cat ~/project/host_vars/demo2.example.com
package: apache
[admin@station project]$ cat ~/project/host_vars/demo3.example.com
package: mariadb-server
[admin@station project]$ cat ~/project/host_vars/demo4.example.com
package: mysql-server

The directory structure for project, if it contained all of the example files above, might look like
this:

project
├── ansible.cfg
├── group_vars
│ ├── datacenters
│ ├── datacenters1
│ └── datacenters2
├── host_vars
│ ├── demo1.example.com
│ ├── demo2.example.com
│ ├── demo3.example.com
│ └── demo4.example.com
├── inventory
└── playbook.yml

Overriding Variables from the Command Line
Inventory variables are overridden by variables set in a playbook, but both kinds of variables may
be overridden through arguments passed to the ansible or ansible-playbook commands on
the command line. This can be useful in a case where the defined value for a variable needs to be
overridden for a single host for a one-off run of a playbook. For example:

[user@demo ~]$ ansible-playbook main.yml --limit=demo2.example.com -e "package=apache"

Variables and Arrays
Instead of assigning a piece of configuration data that relates to the same element (a list of
packages, a list of services, a list of users, etc.) to multiple variables, administrators can use
arrays. One interesting consequence of this is that an array can be browsed.

For instance, consider the following snippet:

user1_first_name: Bob

Registered Variables

DO407-A2.3-en-2-20170725 101

user1_last_name: Jones
user1_home_dir: /users/bjones
user2_first_name: Anne
user2_last_name: Cook
user3_home_dir: /users/acook

This could be rewritten as an array called users:

users:
 bjones:
 first_name: Bob
 last_name: Jones
 home_dir: /users/bjones
 acook:
 first_name: Anne
 last_name: Cook
 home_dir: /users/acook

Users can then be accessed using the following variables:

Returns 'Bob'
users.bjones.first_name

Returns '/users/acook'
users.acook.home_dir

Because the variable is defined as a Python dictionary, an alternative syntax is available.

Returns 'Bob'
users['bjones']['first_name']

Returns '/users/acook'
users['acook']['home_dir']

Important
The dot notation can cause problems if the key names are the same as names of
Python methods or attributes, such as discard, copy, add, and so on. Using the
brackets notation can help avoid errors.

Both syntaxes are valid, but to make troubleshooting easier, it is recommended that
one syntax used consistently in all files throughout any given Ansible project.

Registered Variables
Administrators can capture the output of a command by using the register statement. The
output is saved into a variable that could be used later for either debugging purposes or in order
to achieve something else, such as a particular configuration based on a command's output.

The following playbook demonstrates how to capture the output of a command for debugging
purposes:

- name: Installs a package and prints the result
 hosts: all

Chapter 4. Managing Variables and Inclusions

102 DO407-A2.3-en-2-20170725

 tasks:
 - name: Install the package
 yum:
 name: httpd
 state: installed
 register: install_result

 - debug: var=install_result

When the playbook is run, the debug module is used to dump the value of the install_result
registered variable to the terminal.

[user@demo ~]$ ansible-playbook playbook.yml
PLAY [Installs a package and prints the result] ****************************

TASK [setup] ***
ok: [demo.example.com]

TASK [Install the package] ***
ok: [demo.example.com]

TASK [debug] ***
ok: [demo.example.com] => {
 "install_result": {
 "changed": false,
 "msg": "",
 "rc": 0,
 "results": [
 "httpd-2.4.6-40.el7.x86_64 providing httpd is already installed"
]
 }
}

PLAY RECAP ***
demo.example.com : ok=3 changed=0 unreachable=0 failed=0

Demonstration: Managing Variables
1. From workstation, as the student user, change into the ~/demo_variables-

playbook directory.

[student@workstation ~]$ cd demo_variables-playbook
[student@workstation demo_variables-playbook]$

2. Look at the inventory file. Notice that there are two host groups, webservers and
dbservers, which are children of the larger host group servers. The servers host group
has variables set the old way, directly in the inventory file, including one that sets package
to httpd.

[webservers]
servera.lab.example.com

[dbservers]
servera.lab.example.com

[servers:children]
webservers
dbservers

Demonstration: Managing Variables

DO407-A2.3-en-2-20170725 103

[servers:vars]
ansible_user=devops
ansible_become=yes
package=httpd

3. Create a new playbook, playbook.yml, for all hosts. Using the yum module, install the
package specified by the package variable.

- hosts: all
 tasks:
 - name: Installs the "{{ package }}" package
 yum:
 name: "{{ package }}"
 state: latest

4. Run the playbook using the ansible-playbook command. Watch the output as Ansible
installs the httpd package.

[student@workstation demo_variables-playbook]$ ansible-playbook playbook.yml
PLAY ***

TASK [setup] ***
ok: [servera.lab.example.com]

TASK [Installs the "httpd" package] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

5. Run an ad hoc command to ensure the httpd package has been successfully installed.

[student@workstation demo_variables-playbook]$ ansible servers \
> -a 'yum list installed httpd'
servera.lab.example.com | SUCCESS | rc=0 >>
Loaded plugins: langpacks, search-disabled-repos
Installed Packages
httpd.x86_64 2.4.6-40.el7 @rhel_dvd

6. Create the group_vars directory and a new file group_vars/dbservers to set
the variable package to mariadb-server for the dbservers host group in the
recommended way.

[student@workstation demo_variables-playbook]$ cat group_vars/dbservers
package: mariadb-server

7. Run the playbook again using the ansible-playbook command. Watch Ansible install the
mariadb-server package.

The package variable for the more specific host group dbservers took precedence over
the one for its parent host group servers.

[student@workstation demo_variables-playbook]$ ansible-playbook playbook.yml

Chapter 4. Managing Variables and Inclusions

104 DO407-A2.3-en-2-20170725

PLAY ***

TASK [setup] ***
ok: [servera.lab.example.com]

TASK [Installs the "mariadb-server" package] *******************************
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

The output indicates the variable defined for the hosts group has been overridden.

8. Run an ad hoc command to confirm the mariadb-server package has been successfully
installed.

[student@workstation demo_variables-playbook]$ ansible dbservers \
> -a 'yum list installed mariadb-server'
servera.lab.example.com | SUCCESS | rc=0 >>
Loaded plugins: langpacks, search-disabled-repos
Installed Packages
mariadb-server.x86_64 1:5.5.44-2.el7 @rhel_dvd

9. For servera.lab.example.com, set the variable package to screen.
Do this by creating a new directory, host_vars, and a file host_vars/
servera.lab.example.com that sets the variable in the recommended way.

[student@workstation demo_variables-playbook]$ cat host_vars/servera.lab.example.com
package: screen

10. Run the playbook again. Watch the output as Ansible installs the screen package.

The host-specific value of the package variable overrides any value set by the host's host
groups.

[student@workstation demo_variables-playbook]$ ansible-playbook playbook.yml
PLAY ***

TASK [setup] ***
ok: [servera.lab.example.com]

TASK [Installs the "screen" package] ***************************************
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

11. Run an ad hoc command to confirm the screen package has been successfully installed.

[student@workstation demo_variables-playbook]$ ansible servera.lab.example.com \
> -a 'yum list installed screen'
servera.lab.example.com | SUCCESS | rc=0 >>
Loaded plugins: langpacks, search-disabled-repos
Installed Packages
screen.x86_64 4.1.0-0.21.20120314git3c2946.el7 rhel_dvd

Demonstration: Managing Variables

DO407-A2.3-en-2-20170725 105

12. Run the ansible-playbook command again, this time using the -e option to override the
package variable.

[student@workstation demo_variables-playbook]$ ansible-playbook playbook.yml \
> -e 'package=mutt'
PLAY ***

TASK [setup] ***
ok: [servera.lab.example.com]

TASK [Installs the "mutt" package] ***
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

13. Run an ad hoc command to confirm the mutt package is installed.

[student@workstation demo_variables-playbook]$ ansible all \
> -a 'yum list installed mutt'
servera.lab.example.com | SUCCESS | rc=0 >>
Loaded plugins: langpacks, search-disabled-repos
Installed Packages
mutt.x86_64 5:1.5.21-26.el7 @rhel_dvd

References
Inventory — Ansible Documentation
http://docs.ansible.com/ansible/intro_inventory.html

Variables — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_variables.htm

Variable Precedence: Where Should I Put A Variable?
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-
where-should-i-put-a-variable

YAML Syntax — Ansible Documentation
http://docs.ansible.com/ansible/YAMLSyntax.html

http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/playbooks_variables.htm
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/ansible/YAMLSyntax.html

Chapter 4. Managing Variables and Inclusions

106 DO407-A2.3-en-2-20170725

Guided Exercise: Managing Variables

In this exercise, you will define and use variables in a playbook.

Outcomes

You should be able to:

• Define variables in a playbook.

• Create various tasks that include defined variables.

Before you begin

From workstation, run the lab setup script to confirm the environment is ready for the
exercise to begin. The script creates the working directory, called dev-vars-playbook, and
populates it with an Ansible configuration file and host inventory.

[student@workstation ~]$ lab manage-variables-playbooks setup

Steps

1. From workstation, as the student user, change into the ~/dev-vars-playbook
directory.

[student@workstation ~]$ cd ~/dev-vars-playbook
[student@workstation dev-vars-playbook]$

2. Over the next several steps, you will create a playbook that installs the Apache web server
and opens the ports for the service to be reachable. The playbook queries the web server to
ensure it is up and running.

First, create the playbook playbook.yml and define the following variables in the vars
section: web_pkg, which defines the name of the package to install for the web server;
firewall_pkg, which defines the name of the firewall package; web_service for the
name of the web service to manage; and firewall_service for the name of the firewall
service to manage. Add the python_pkg variable to install a required package for the uri
module; and rule, which defines the service to open.

- name: Deploy and start Apache HTTPD service
 hosts: webserver
 vars:
 web_pkg: httpd
 firewall_pkg: firewalld
 web_service: httpd
 firewall_service: firewalld
 python_pkg: python-httplib2
 rule: http

3. Create the tasks block and create the first task, which should use the yum module to make
sure the latest versions of the required packages are installed.

 tasks:
 - name: Required packages are installed and up to date
 yum:

DO407-A2.3-en-2-20170725 107

 name:
 - "{{ web_pkg }}"
 - "{{ firewall_pkg }}"
 - "{{ python_pkg }}"
 state: latest

Note
If you use ansible-doc yum to look at the syntax for the yum module, you'll see
that its name directive will take a list of packages that the module should work
with, so you do not need separate tasks to makes sure each package is up to date.

4. Create two tasks to make sure that the httpd and firewalld services are started and
enabled.

 - name: The {{ firewall_service }} service is started and enabled
 service:
 name: "{{ firewall_service }}"
 enabled: true
 state: started

 - name: The {{ web_service }} service is started and enabled
 service:
 name: "{{ web_service }}"
 enabled: true
 state: started

Note
The service module works differently than the yum module, as documented by
ansible-doc service. Its name directive takes the name of exactly one service
to work with.

It is possible to write a single task that makes sure both of these services are
started and enabled, by using the with_items directive that we'll cover later in
this course.

5. Add a task that will ensure that certain content is in /var/www/html/index.html.

 - name: Web content is in place
 copy:
 content: "Example web content"
 dest: /var/www/html/index.html

6. Add a task that will use the firewalld module to make sure the firewall ports are open for
the firewalld service named in the rule variable.

 - name: The firewall port for {{ rule }} is open
 firewalld:
 service: "{{ rule }}"
 permanent: true

Chapter 4. Managing Variables and Inclusions

108 DO407-A2.3-en-2-20170725

 immediate: true
 state: enabled

7. Create a new play that will query the web service to ensure everything has been correctly
configured. It should run on localhost. Because of that fact, Ansible doesn't have to
change identity, so set the become module to false. The uri module can be used to check
a URL. For this task, check for a status code of 200 to confirm the server is running and
properly configured.

- name: Verify the Apache service
 hosts: localhost
 become: false
 tasks:
 - name: Ensure the webserver is reachable
 uri:
 url: http://servera.lab.example.com
 status_code: 200

8. When completed, the playbook should appear as follows. Review the playbook and confirm
that both plays are correct.

- name: Deploy and start Apache HTTPD service
 hosts: webserver
 vars:
 web_pkg: httpd
 firewall_pkg: firewalld
 web_service: httpd
 firewall_service: firewalld
 python_pkg: python-httplib2
 rule: http

 tasks:
 - name: Required packages are installed and up to date
 yum:
 name:
 - "{{ web_pkg }}"
 - "{{ firewall_pkg }}"
 - "{{ python_pkg }}"
 state: latest

 - name: The {{ firewall_service }} service is started and enabled
 service:
 name: "{{ firewall_service }}"
 enabled: true
 state: started

 - name: The {{ web_service }} service is started and enabled
 service:
 name: "{{ web_service }}"
 enabled: true
 state: started

 - name: Web content is in place
 copy:
 content: "Example web content"
 dest: /var/www/html/index.html

 - name: The firewall port for {{ rule }} is open
 firewalld:
 service: "{{ rule }}"

DO407-A2.3-en-2-20170725 109

 permanent: true
 immediate: true
 state: enabled

- name: Verify the Apache service
 hosts: localhost
 become: false
 tasks:
 - name: Ensure the webserver is reachable
 uri:
 url: http://servera.lab.example.com
 status_code: 200

9. Before running the playbook, verify its syntax is correct by running ansible-playbook
--syntax-check. If it reports any errors, correct them before moving to the next step. You
should see output similar to the following:

[student@workstation dev-vars-playbook]$ ansible-playbook --syntax-check
 playbook.yml

playbook: playbook.yml

10. The playbook can be run using the ansible-playbook command. Watch the output as
Ansible starts by installing the packages, starting and enabling the services, and ensuring
the web server is reachable.

[student@workstation dev-vars-playbook]$ ansible-playbook playbook.yml

PLAY [Deploy and start Apache HTTPD service] ***********************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Required pacakges are installed and up to date] **************************
changed: [servera.lab.example.com]

TASK [The firewalld service is started and enabled] ****************************
ok: [servera.lab.example.com]

TASK [The httpd service is started and enabled] ********************************
ok: [servera.lab.example.com]

TASK [Web content is in place] ***
changed: [servera.lab.example.com]

TASK [The firewall port for http is open] **************************************
ok: [servera.lab.example.com]

PLAY [Verify the Apache service] ***

TASK [Gathering Facts] ***
ok: [localhost]

TASK [Ensure the webserver is reachable] ***************************************
ok: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=0 unreachable=0 failed=0
servera.lab.example.com : ok=6 changed=2 unreachable=0 failed=0

Chapter 4. Managing Variables and Inclusions

110 DO407-A2.3-en-2-20170725

Cleanup

Run the lab manage-variables-playbooks cleanup command to undo the changes made
to servera.

[student@workstation ~]$ lab manage-variables-playbooks cleanup

Managing Facts

DO407-A2.3-en-2-20170725 111

Managing Facts

Objectives
After completing this section, students should be able to:

• Manage Facts in Playbooks

Ansible Facts
Ansible facts are variables that are automatically discovered by Ansible on a managed host.
Facts contain host-specific information that can be used just like regular variables in plays,
conditionals, loops, or any other statement that depends on a value collected from a managed
host.

Some of the facts gathered for a managed host might include

• The host name

• The kernel version

• The network interfaces

• The IP addresses

• The version of the operating system

• Various environment variables

• The number of CPUs

• The available or free memory

• The available disk space

Facts are a convenient way to retrieve the state of a managed host and to determine what action
to take based on that state. For example:

• A server can be restarted by a conditional task which is run based on a fact containing the
managed host's current kernel version.

• The MySQL configuration file can be customized depending on the available memory reported
by a fact.

• The IPv4 address used in a configuration file can be set based on the value of a fact.

Normally, every play runs the setup module automatically before the first task in order to
gather facts. This is reported as the Gathering Facts task in Ansible 2.3, or simply as setup
in earlier versions of Ansible. You don't need to have a task to run setup in your play, it is
automatically run for you.

In order to see what facts are gathered for managed hosts, you can run setup with an ad hoc
command on those hosts. In the following example, an ad hoc command is used to run the setup
module on the managed host demo1.example.com:

Chapter 4. Managing Variables and Inclusions

112 DO407-A2.3-en-2-20170725

[user@demo ~]$ ansible demo1.example.com -m setup
ansible demo1.example.com -m setup
demo1.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "172.25.250.10"
],
 "ansible_all_ipv6_addresses": [
 "fe80::5054:ff:fe00:fa0a"
],
 "ansible_architecture": "x86_64",
 "ansible_bios_date": "01/01/2011",
 "ansible_bios_version": "0.5.1",
 "ansible_cmdline": {
 "BOOT_IMAGE": "/boot/vmlinuz-3.10.0-327.el7.x86_64",
 "LANG": "en_US.UTF-8",
 "console": "ttyS0,115200n8",
 "crashkernel": "auto",
 "net.ifnames": "0",
 "no_timer_check": true,
 "ro": true,
 "root": "UUID=2460ab6e-e869-4011-acae-31b2e8c05a3b"
 }
... Output omitted ...

The output of the ad hoc command is returned in JSON format as a hash/dictionary of variables.
You can browse the output to see what facts are gathered, and use them in your plays.

The following table shows some facts which might be gathered from a managed node that may
be useful in a playbook:

Ansible Facts

Fact Variable

Short hostname ansible_hostname

Fully-qualified domain name ansible_fqdn

Main IPv4 address (based on
routing)

ansible_default_ipv4.address

A list of the names of all
network interfaces

ansible_interfaces

Main disk first partition size
(based on disk name, such as
vda, vdb, and so on.)

ansible_devices.vda.partitions.vda1.size

A list of DNS servers ansible_dns.nameservers

Version of the currently
running kernel

ansible_kernel

Turning Off Fact Gathering

DO407-A2.3-en-2-20170725 113

Note
Remember that when a variable's value is a hash/dictionary, there are two syntaxes
that can be used to retrieve the value. In the preceding example,

• ansible_default_ipv4.address can also be written
ansible_default_ipv4['address']

• ansible_devices.vda.partitions.vda1.size can also be written
ansible_devices['vda']['partitions']['vda1']['size']

• ansible_dns.nameservers can also be written
ansible_dns['nameservers']

When a fact is used in a playbook, Ansible dynamically substitutes the variable name with the
corresponding value:

- hosts: all
 tasks:
 - name: Prints various Ansible facts
 debug:
 msg: >
 The default IPv4 address of {{ ansible_fqdn }}
 is {{ ansible_default_ipv4.address }}

The following output shows how Ansible was able to query the managed node and dynamically
use the system information to update the variable. Moreover, facts can be also used to create
dynamic groups of hosts that match particular criteria.

[user@demo ~]$ ansible-playbook playbook.yml
PLAY ***

TASK [Gathering Facts] ***
ok: [demo1.example.com]

TASK [Prints various Ansible facts] **
ok: [demo1.example.com] => {
 "msg": "The default IPv4 address of demo1.example.com is
 172.25.250.10"
}

PLAY RECAP ***
demo1.example.com : ok=2 changed=0 unreachable=0 failed=0

Turning Off Fact Gathering
Sometimes, you don't want to gather facts for your play. There are a couple of reasons why this
might be the case. It might be that you are not using any facts and want to speed up the play
or reduce load caused by the play on the managed hosts. It might be that the managed hosts
can't run the setup module for some reason, or need to install some prequisite software before
gathering facts.

To disable fact gathering for a play, set the gather_facts key to no:

Chapter 4. Managing Variables and Inclusions

114 DO407-A2.3-en-2-20170725

- name: This play gathers no facts automatically
 hosts: large_farm
 gather_facts: no

Even if gather_facts: no is set for a play, you can manually gather facts at any time by
running a task that uses the setup module:

 tasks:
 - name: Manually gather facts
 setup:

Fact Filters
Ansible facts contain extensive information about the system. Administrators can use Ansible
filters in order to limit the results returned when gathering facts from a managed node. Filters
can be used to:

• Only retrieve information about network cards.

• Only retrieve information about disks.

• Only retrieve information about users.

To use filters, the expression needs to be passed as an option, using -a
'filter=EXPRESSION'. For example, to only return information about eth0, a filter can be
applied on the ansible_eth0 element:

[user@demo ~]$ ansible demo1.example.com -m setup -a 'filter=ansible_eth0'
demo1.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_eth0": {
 "active": true,
 "device": "eth0",
 "ipv4": {
 "address": "172.25.250.10",
 "broadcast": "172.25.250.255",
 "netmask": "255.255.255.0",
 "network": "172.25.250.0"
 },
 "ipv6": [
 {
 "address": "fe80::5054:ff:fe00:fa0a",
 "prefix": "64",
 "scope": "link"
 }
],
 "macaddress": "52:54:00:00:fa:0a",
 "module": "virtio_net",
 "mtu": 1500,
 "pciid": "virtio0",
 "promisc": false,
 "type": "ether"
 }
 },
 "changed": false
}

Notice that Ansible only returns the facts in the ansible_eth0 hash/dictionary.

Custom Facts

DO407-A2.3-en-2-20170725 115

Custom Facts
Administrators can create custom facts which are stored locally on each managed host. These
facts are integrated into the list of standard facts gathered by setup when it runs on the
managed host. These allow the managed host to provide arbitrary variables to Ansible which can
be used to adjust the behavior of plays.

Custom facts can be defined in a static file, formatted as an INI file or using JSON. They can also
be executable scripts which generate JSON output, just like a dynamic inventory script.

Custom facts allow an administrator to define certain values for managed hosts which plays
might use to populate configuration files or conditionally run tasks. Dynamic custom facts allow
the values for these facts or even which facts are provided to be determined programatically
when the play is run.

By default, setup loads custom facts from files and scripts in each managed host's /etc/
ansible/facts.d directory. The name of each file or script must end in .fact in order to be
used. Dynamic custom fact scripts must output JSON-formatted facts and must be executable.

This is an example of a static custom facts file written in INI format. An INI-formatted custom
facts file contains a top level defined by a section, followed by the key-value pairs of the facts to
define:

[packages]
web_package = httpd
db_package = mariadb-server

[users]
user1 = joe
user2 = jane

The same facts could be provided in JSON format. The following JSON facts are equivalent to the
facts specified by the INI in the preceding example. The JSON data could be stored in a static text
file or printed to standard output by an executable script:

{
 "packages": {
 "web_package": "httpd",
 "db_package": "mariadb-server"
 },
 "users": {
 "user1": "joe",
 "user2": "jane"
 }
}

Note
Custom fact files can not be in YAML format like a playbook. JSON format is the closest
equivalent.

Custom facts are stored by setup in the ansible_local variable. Facts are organized based on
the name of the file that defined them. For example, assume that the preceding custom facts are
produced by a file saved as /etc/ansible/facts.d/custom.fact on the managed host. In
that case, the value of ansible_local['custom']['users']['user1'] is joe.

Chapter 4. Managing Variables and Inclusions

116 DO407-A2.3-en-2-20170725

You can check the structure of your custom facts by running the setup module on the managed
hosts with an ad hoc command.

[user@demo ~]$ ansible demo1.example.com -m setup -a 'filter=ansible_local'
demo1.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_local": {
 "custom": {
 "packages": {
 "db_package": "mariadb-server",
 "web_package": "httpd"
 },
 "users": {
 "user1": "joe",
 "user2": "jane"
 }
 }
 }
 },
 "changed": false
}

Custom facts can be used the same way as default facts in playbooks:

[user@demo ~]$ cat playbook.yml

- hosts: all
 tasks:
 - name: Prints various Ansible facts
 debug:
 msg: >
 The package to install on {{ ansible_fqdn }}
 is {{ ansible_local.custom.packages.web_package }}

[user@demo ~]$ ansible-playbook playbook.yml
PLAY ***

TASK [Gathering Facts] ***
ok: [demo1.example.com]

TASK [Prints various Ansible facts] **
ok: [demo1.example.com] => {
 "msg": "The package to install on demo1.example.com is httpd"
}

PLAY RECAP ***
demo1.example.com : ok=2 changed=0 unreachable=0 failed=0

Magic Variables
Some variables are not facts or configured through the setup module, but are also
automatically set by Ansible. These magic variables can also be useful to get information specific
to a particular managed host.

Four of the most useful are:

hostvars
Contains the variables for managed hosts, and can be used to get the values for another
managed host's variables. It won't include the managed host's facts if they haven't been
gathered yet for that host.

Magic Variables

DO407-A2.3-en-2-20170725 117

group_names
Lists all groups the current managed host is in.

groups
Lists all groups and hosts in the inventory.

inventory_hostname
Contains the hostname for the current managed host as configured in the inventory. This
may be different from the hostname reported by facts for various reasons.

There are a number of other "magic variables" as well. For more information, see http://
docs.ansible.com/ansible/playbooks_variables.html. One way to get insight into their values is to
use the debug module to report on the contents of the hostvars variable for a particular host:

[user@demo ~]$ ansible localhost -m debug -a 'var=hostvars["localhost"]'

References
setup - Gathers facts about remote hosts — Ansible Documentation
http://docs.ansible.com/ansible/setup_module.html

Local Facts (Facts.d) — Variables — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_variables.html#local-facts-facts-d

http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/playbooks_variables.html
http://docs.ansible.com/ansible/setup_module.html
http://docs.ansible.com/ansible/playbooks_variables.html#local-facts-facts-d

Chapter 4. Managing Variables and Inclusions

118 DO407-A2.3-en-2-20170725

Guided Exercise: Managing Facts

In this exercise, you will gather Ansible facts from a managed host and use them in playbooks.

Outcomes

You should be able to:

• Gather facts from a host.

• Create various tasks that use the gathered facts.

Before you begin

From workstation, run the lab setup script to confirm the environment is ready for the
exercise to begin. The script creates the working directory, dev-vars-facts, and populates it
with an Ansible configuration file and host inventory.

[student@workstation ~]$ lab manage-variables-facts setup

Steps

1. From workstation, as the student user, change into the ~/dev-vars-facts directory.

[student@workstation ~]$ cd ~/dev-vars-facts
[student@workstation dev-vars-facts]$

2. The Ansible setup module retrieves facts from a system. Run an ad hoc command to
retrieve the facts for all servers in the webserver group. The output will display all the facts
gathered for servera.lab.example.com in JSON format. Review some of the variables
displayed.

[student@workstation dev-vars-facts]$ ansible webserver -m setup
... Output omitted ...
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "172.25.250.10"
],
 "ansible_all_ipv6_addresses": [
 "fe80::5054:ff:fe00:fa0a"
],
... Output omitted ...

3. Filter the facts matching the ansible_user expression. Append a wildcard to match all
facts starting with ansible_user.

[student@workstation dev-vars-facts]$ ansible webserver -m setup -a
 'filter=ansible_user*'
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_user_dir": "/root",
 "ansible_user_gecos": "root",
 "ansible_user_gid": 0,
 "ansible_user_id": "root",
 "ansible_user_shell": "/bin/bash",

DO407-A2.3-en-2-20170725 119

 "ansible_user_uid": 0,
 "ansible_userspace_architecture": "x86_64",
 "ansible_userspace_bits": "64"
 },
 "changed": false
}

4. Create a fact file named custom.fact. The fact file defines the package to install and the
service to start on servera. The file should read as follows:

[general]
package = httpd
service = httpd
state = started

5. Create the setup_facts.yml playbook to make the /etc/ansible/facts.d remote
directory and to save the custom.fact file to that directory.

- name: Install remote facts
 hosts: webserver
 vars:
 remote_dir: /etc/ansible/facts.d
 facts_file: custom.fact
 tasks:
 - name: Create the remote directory
 file:
 state: directory
 recurse: yes
 path: "{{ remote_dir }}"
 - name: Install the new facts
 copy:
 src: "{{ facts_file }}"
 dest: "{{ remote_dir }}"

6. Run an ad hoc command with the setup module. Since user-defined facts are put into the
ansible_local section, use a filter to display only this section. There should not be any
custom facts at this point.

[student@workstation dev-vars-facts]$ ansible webserver -m setup -a
 'filter=ansible_local'
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {},
 "changed": false
}

7. Before running the playbook, verify its syntax is correct by running ansible-playbook
--syntax-check. If it reports any errors, correct them before moving to the next step. You
should see output similar to the following:

[student@workstation dev-vars-facts]$ ansible-playbook --syntax-check
 setup_facts.yml

playbook: setup_facts.yml

Chapter 4. Managing Variables and Inclusions

120 DO407-A2.3-en-2-20170725

8. Run the setup_facts.yml playbook.

[student@workstation dev-vars-facts]$ ansible-playbook setup_facts.yml

PLAY [Install remote facts] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Create the remote directory] ***
changed: [servera.lab.example.com]

TASK [Install the new facts] ***
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

9. To ensure the new facts have been properly installed, run an ad hoc command with the
setup module again. Display only the ansible_local section. The custom facts should
appear.

[student@workstation dev-vars-facts]$ ansible webserver -m setup -a
 'filter=ansible_local'
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_local": {
 "custom": {
 "general": {
 "package": "httpd",
 "service": "httpd",
 "state": "started"
 }
 }
 }
 },
 "changed": false
}

10. It is now possible to create the main playbook that uses both default and user facts to
configure servera. Over the next several steps, you will add to the playbook file. Start the
playbook.yml playbook file with the following:

- name: Install Apache and starts the service
 hosts: webserver

11. Continue editing the playbook.yml file by creating the first task that installs the httpd
package. Use the user fact for the name of the package.

 tasks:
 - name: Install the required package
 yum:
 name: "{{ ansible_local.custom.general.package }}"
 state: latest

DO407-A2.3-en-2-20170725 121

12. Create another task that uses the custom fact to start the httpd service.

 - name: Start the service
 service:
 name: "{{ ansible_local.custom.general.service }}"
 state: "{{ ansible_local.custom.general.state }}"

13. When completed with all the tasks, the full playbook should look like the following. Review
the playbook and ensure all the tasks are defined.

- name: Install Apache and starts the service
 hosts: webserver

 tasks:
 - name: Install the required package
 yum:
 name: "{{ ansible_local.custom.general.package }}"
 state: latest

 - name: Start the service
 service:
 name: "{{ ansible_local.custom.general.service }}"
 state: "{{ ansible_local.custom.general.state }}"

14. Before running the playbook, use an ad hoc command to verify the httpd service is not
currently running on servera.

[student@workstation dev-vars-facts]$ ansible servera.lab.example.com -m command -a
 'systemctl status httpd'
servera.lab.example.com | FAILED | rc=4 >>
Unit httpd.service could not be found.

15. Verify the syntax of the playbook by running ansible-playbook --syntax-check. If
it reports any errors, correct them before moving to the next step. You should see output
similar to the following:

[student@workstation dev-vars-facts]$ ansible-playbook --syntax-check playbook.yml

playbook: playbook.yml

16. Run the playbook using the ansible-playbook command. Watch the output as Ansible
starts by installing the package, then enabling the service.

[student@workstation dev-vars-facts]$ ansible-playbook playbook.yml

PLAY [Install Apache and start the service] ************************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Install the required package] **
changed: [servera.lab.example.com]

TASK [Start the service] ***

Chapter 4. Managing Variables and Inclusions

122 DO407-A2.3-en-2-20170725

changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

17. Use an ad hoc command to execute systemctl to check if the httpd service is now
running on servera.

[student@workstation dev-vars-facts]$ ansible servera.lab.example.com -m command -a
 'systemctl status httpd'
servera.lab.example.com | SUCCESS | rc=0 >>
● httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled; vendor preset:
 disabled)
 Active: active (running) since Mon 2016-05-16 17:17:20 PDT; 12s ago
 Docs: man:httpd(8)
 man:apachectl(8)
 Main PID: 32658 (httpd)
 Status: "Total requests: 0; Current requests/sec: 0; Current traffic: 0 B/sec"
 CGroup: /system.slice/httpd.service
... Output omitted ...

Evaluation

From workstation, run the lab manage-variables-facts grade command to confirm
success on this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab manage-variables-facts grade

Cleanup

Run the lab manage-variables-facts command to clean up the lab.

[student@workstation ~]$ lab manage-variables-facts cleanup

Managing Inclusions

DO407-A2.3-en-2-20170725 123

Managing Inclusions

After completing this section, students should be able to:

• Include variables and tasks from external files into a playbook

Inclusions
When working with complex or long playbooks, administrators can use separate files to divide
tasks and lists of variables into smaller pieces for easier management. There are multiple ways to
include task files and variables in a playbook.

• Tasks can be included in a playbook from an external file by using the include directive.

tasks:
 - name: Include tasks to install the database server
 include: tasks/db_server.yml

• The include_vars module can include variables defined in either JSON or YAML files,
overriding host variables and playbook variables already defined.

 tasks:
 - name: Include the variables from a YAML or JSON file
 include_vars: vars/variables.yml

Using multiple, external files for tasks and variables is a convenient way to build the main
playbook in a modular way, and facilitates reuse of Ansible elements across multiple playbooks.

Including Tasks
Consider the following examples where it might be useful to manage a set of tasks as a file
separate from the playbook:

• If fresh servers require complete configuration, administrators could create various sets of
tasks for creating users, installing packages, configuring services, configuring privileges,
setting up access to a shared file system, hardening the servers, installing security updates,
and installing a monitoring agent. Each of these sets of tasks could be managed through a
separate self-contained task file.

• If servers are managed collectively by the developers, the system administrators and the
database administrators, every organization can write its own set of tasks that will be reviewed
and integrated by the systems manager.

• If a server requires a particular configuration, it can be integrated as a set of tasks executed
based on a conditional (that is, including the tasks only if specific criteria are met).

• If a group of servers need to run a particular task or set of tasks, the tasks might only be run
on a server if it is part of a specific host group.

The include directive allows administrators to have a task file inserted at a particular point in a
playbook. A task file is simply a file that contains a flat list of tasks:

- name: Installs the {{ package }} package

Chapter 4. Managing Variables and Inclusions

124 DO407-A2.3-en-2-20170725

 yum:
 name: "{{ package }}"
 state: latest

- name: Starts the {{ service }} service
 service:
 name: "{{ service }}"
 state: "{{ state }}"

The include directive is used in the playbook to specify what task file to include at what point
in the playbook. A vars directive can be used to set variables used by the task file, and will
override playbook variables, inventory variables, registered variables, and facts defined in the
task file.

Assume the task file in the previous example was saved as the file environment.yml. An
include directive with variables could be used in a playbook, like this:

- name: Install, start, and enable services
 hosts: all
 tasks:
 - name: Includes the tasks file and defines the variables
 include: environment.yml
 vars:
 package: mariadb-server
 service: mariadb
 state: started
 register: output

 - name: Debugs the included tasks
 debug:
 var: output

The following output shows how the tasks have been included and executed. In this case, the
mariadb-server package has been installed because the variable package with a value of
mariadb-server has been set by the include directive.

[user@demo ~]$ ansible-playbook.yml
PLAY [Install, start, and enable services] ********************************

TASK [setup] **
ok: [demo1.example.com]

TASK [Includes the tasks file and defines the variables] ******************
included: /home/student/demo-vars-inclusions/environment.yml for
 demo1.example.com

TASK [Installs the mariadb-server package] ********************************
ok: [demo1.example.com]

TASK [Starts the mariadb service] ***
changed: [demo1.example.com]

TASK [Debugs the included tasks] **
ok: [demo1.example.com] => {
 "output": {
 "changed": false,
 "include": "environment.yml",
 "include_variables": {}
 }

Including Variables

DO407-A2.3-en-2-20170725 125

}

PLAY RECAP **
demo1.example.com : ok=5 changed=1 unreachable=0 failed=0

Important
Tasks included in a playbook are evaluated based on their order in the playbook.

For example, a playbook may have a task to start a service provided by a software
package, and a second task included from an external file that installs that software
package. The external task must be included in the playbook before the task to start
the package's service is declared in the playbook.

Administrators can create a dedicated directory for task files, and save all task files in that
directory. Then the playbook simply includes task files from that directory in the playbook. This
allows construction of a complex playbook while making it easier to manage its structure and
components.

Note
For complex projects, roles provide a powerful way to organize included task files and
playbooks. This topic will be discussed later in the course.

Including Variables
Just as tasks can be included in playbooks, variables can be externally defined and included in
playbooks. There are many ways in which this can be done. Some of the ways to set variables
include:

• Inventory variables defined in the inventory file or in external files in host_vars and
group_vars directories

• Facts and registered variables

• Playbook variables defined in the playbook file with vars or in an external file through
vars_files

The include_vars module is one more way to set variables in a playbook from an external
file. The interesting thing about this method is that it is done through a module, and it overrides
any values set through the above methods. This can be useful when combining task files that set
values for their variables which you want to override, or in conjunction with conditional execution
to set certain values only when specific conditions are met.

Included variable files may be defined using either JSON or YAML, YAML being the preferred
syntax. The include_vars module takes the path of the variable file to import as an argument.

Chapter 4. Managing Variables and Inclusions

126 DO407-A2.3-en-2-20170725

Important
If a task will requires the variable settings from a variable file, the administrator must
include the variable file in the playbook before the task is defined.

Consider the following snippets that demonstrate how to define variables and include them in a
playbook with include_vars. The following YAML file, variables.yml, contains two variables
that define the packages to install:

packages:
 web_package: httpd
 db_package: mariadb-server

To import these two variables in a playbook, the include_vars module can be used:

- name: Install web application packages
 hosts: all
 tasks:
 - name: Includes the tasks file and defines the variables
 include_vars: variables.yml

 - name: Debugs the variables imported
 debug:
 msg: >
 "{{ packages['web_package'] }} and {{ packages.db_package }}
 have been imported"

The following output shows that the variables have been successfully imported.

[user@prompt ~]$ ansible-playbook playbook.yml
PLAY [Install web application packages] ************************************

TASK [setup] ***
ok: [demo.example.com]

TASK [Includes the tasks file and defines the variables] *******************
ok: [demo.example.com]

TASK [Debugs the variables imported] ***************************************
ok: [demo.example.com] => {
 "msg": "httpd and mariadb-server have been imported"
}

PLAY RECAP ***
demo.example.com : ok=3 changed=0 unreachable=0 failed=0

Including Variables

DO407-A2.3-en-2-20170725 127

Important
When deciding where to define variables, try to keep things simple.

In most cases, it is not necessary to use include_vars, host_vars and
group_vars files, playbook vars_files directives, inlined variables in playbook and
inventory files, and command-line overrides all at the same time. In fact, that much
complexity could make it hard to easily maintain your Ansible project.

1. From workstation, as the student user, change into the ~/demo-vars-inclusions
directory.

[student@workstation ~]$ cd demo-vars-inclusions
[student@workstation demo-vars-inclusions]$

2. Define the paths.yml variables file and create a dictionary that sets some system
paths. Specify the fileserver base path as /home/student/srv/filer/, with the
ansible_fqdn variable as the subdirectory. Specify the dbpath base path as /home/
student/srv/database/, with the ansible_fqdn variable as the subdirectory.

paths:
 fileserver: /home/student/srv/filer/{{ ansible_fqdn }}
 dbpath: /home/student/srv/database/{{ ansible_fqdn }}

3. Create the fileservers.yml playbook and include the paths.yml variables file. The
fileserver will be created using the variable defined previously in the paths.yml
variables file.

- name: Configure fileservers
 hosts: fileservers
 tasks:
 - name: Imports the variables file
 include_vars: paths.yml

 - name: Creates the remote directory
 file:
 path: "{{ paths.fileserver }}"
 state: directory
 mode: 0755
 register: result

 - name: Debugs the results
 debug:
 var: result

4. Run the fileservers.yml playbook and examine the output.

[student@workstation demo-vars-inclusions]$ ansible-playbook fileservers.yml
PLAY [Configure fileservers] ***

TASK [setup] ***

Chapter 4. Managing Variables and Inclusions

128 DO407-A2.3-en-2-20170725

ok: [servera.lab.example.com]

TASK [Imports the variables file] **
ok: [servera.lab.example.com]

TASK [Creates the remote directory] **
changed: [servera.lab.example.com]

TASK [Debugs the results] **
ok: [servera.lab.example.com] => {
 "result": {
 "changed": true,
 "gid": 0,
 "group": "root",
 "mode": "0755",
 "owner": "root",
 "path": "/home/student/srv/filer/servera.lab.example.com",
 "secontext": "unconfined_u:object_r:user_home_t:s0",
 "size": 6,
 "state": "directory",
 "uid": 0
 }
}

PLAY RECAP ***
servera.lab.example.com : ok=4 changed=1 unreachable=0 failed=0

The output shows the directory structure that has been created by Ansible, which matches
the path that has been set by the paths.fileserver variable.

5. Create the dbservers.yml playbook. Include the variable file and use the paths.dbpath
variable to create the directory structure.

- name: Configure DB Servers
 hosts: dbservers
 tasks:
 - name: Imports the variables file
 include_vars: paths.yml

 - name: Creates the remote directory
 file:
 path: "{{ paths.dbpath }}"
 state: directory
 mode: 0755
 register: result

 - name: Debugs the results
 debug:
 var: result

6. Run the dbservers.yml playbook and examine the output.

[student@workstation demo-vars-inclusions]$ ansible-playbook dbservers.yml
PLAY [Configure DB Servers] **

TASK [setup] ***
ok: [servera.lab.example.com]

TASK [Imports the variables file] **

Including Variables

DO407-A2.3-en-2-20170725 129

ok: [servera.lab.example.com]

TASK [Creates the remote directory] **
changed: [servera.lab.example.com]

TASK [Debugs the results] **
ok: [servera.lab.example.com] => {
 "result": {
 "changed": true,
 "gid": 0,
 "group": "root",
 "mode": "0755",
 "owner": "root",
 "path": "/home/student/srv/database/servera.lab.example.com",
 "secontext": "unconfined_u:object_r:user_home_t:s0",
 "size": 6,
 "state": "directory",
 "uid": 0
 }
}

PLAY RECAP ***
servera.lab.example.com : ok=4 changed=1 unreachable=0 failed=0

7. Create another variable file, package.yml, and define the name of the package to install.

packages:
 web_pkg: httpd

8. Create a task file, called install_package.yml, and create a basic task that installs a
package.

- name: Installs {{ packages.web_pkg }}
 yum:
 name: "{{ packages.web_pkg }}"
 state: latest

9. Create the playbook.yml playbook. Define it for the hosts in the fileservers group.
Include both variable files as well as the task file.

- name: Install fileserver packages
 hosts: fileservers
 tasks:
 - name: Includes the variable
 include_vars: package.yml

 - name: Installs the package
 include: install_package.yml

10. Run the playbook and watch the output.

[student@workstation demo-vars-inclusions]$ ansible-playbook playbook.yml
PLAY [Install fileserver packages] ***

Chapter 4. Managing Variables and Inclusions

130 DO407-A2.3-en-2-20170725

TASK [setup] ***
ok: [servera.lab.example.com]

TASK [Includes the variable] ***
ok: [servera.lab.example.com]

TASK [Installs the package] **
included: /home/student/demo-vars-inclusions/install_package.yml
 for servera.lab.example.com

TASK [Installs httpd] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=4 changed=1 unreachable=0 failed=0

Note the httpd package has been installed from a task, whereas the name of the package to
install is defined in the variables file.

11. Update the playbook.yml playbook to override the name of the package to install.
Append a vars block to the include statement and define a dictionary to override the
name of the package to install.

- name: Install fileserver packages
 hosts: fileservers
 tasks:
 - name: Includes the variable
 include_vars: package.yml

 - name: Installs the package
 include: install_package.yml
 vars:
 packages:
 web_pkg: tomcat

12. Run the playbook and watch the output as Ansible installs the tomcat package.

[student@workstation demo-vars-inclusions]$ ansible-playbook playbook.yml
PLAY [Install fileserver packages] ***

TASK [setup] ***
ok: [servera.lab.example.com]

TASK [Includes the variable] ***
ok: [servera.lab.example.com]

TASK [Installs the package] **
included: /home/student/demo-vars-inclusions/install_package.yml
 for servera.lab.example.com

TASK [Installs tomcat] ***
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=4 changed=1 unreachable=0 failed=0

Including Variables

DO407-A2.3-en-2-20170725 131

References
Playbook Roles and Include Statements — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_roles.html

include_vars - Load variables from files, dynamically within a task — Ansible
Documentation
http://docs.ansible.com/ansible/include_vars_module.html

file - Sets attributes of files — Ansible Documentation
http://docs.ansible.com/ansible/file_module.html

http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/include_vars_module.html
http://docs.ansible.com/ansible/file_module.html

Chapter 4. Managing Variables and Inclusions

132 DO407-A2.3-en-2-20170725

Guided Exercise: Managing Inclusions

In this exercise, you will manage inclusions in Ansible playbooks.

Outcomes

You should be able to:

• Define variables and tasks in separate files.

• Include variable files and task files in playbooks.

Before you begin

From workstation, run the lab setup script to confirm the environment is ready for the lab to
begin. The script creates the working directory dev-vars-inclusions.

[student@workstation ~]$ lab manage-variables-inclusions setup

Steps

1. From workstation, as the student user, change into the directory ~/dev-vars-
inclusions.

[student@workstation ~]$ cd ~/dev-vars-inclusions
[student@workstation dev-vars-inclusions]$

2. One task file, one variable file, and one playbook will be created for this exercise. The
variable file defines, in YAML format, a variable used by the playbook. The task file defines
the required tasks and includes variables that will be passed later on as arguments.

2.1. Create a directory called tasks and change into that directory.

[student@workstation dev-vars-inclusions]$ mkdir tasks && cd tasks
[student@workstation tasks]$

2.2. In the tasks directory, create the environment.yml task file. Define the two tasks
that install and start the web server; use the package variable for the package name,
service for the service name, and svc_state for the service state.

 - name: Install the {{ package }} package
 yum:
 name: "{{ package }}"
 state: latest
 - name: Start the {{ service }} service
 service:
 name: "{{ service }}"
 state: "{{ svc_state }}"

2.3. Change back into the main project directory. Create a directory named vars and
change into that directory.

[student@workstation tasks]$ cd ..

DO407-A2.3-en-2-20170725 133

[student@workstation dev-vars-inclusions]$ mkdir vars
[student@workstation dev-vars-inclusions]$ cd vars
[student@workstation vars]$

2.4. In the vars directory, create the variables.yml variables file. The file defines the
firewall_pkg variable in YAML format. The file should read as follows:

firewall_pkg: firewalld

2.5. Change back to the top-level project directory for the playbook.

[student@workstation vars]$ cd ..
[student@workstation dev-vars-inclusions]$

3. Create and edit the main playbook, named playbook.yml. The playbook imports the tasks
as well as the variables; and it installs the firewalld service and configures it.

3.1. Start with a name for the playbook, then add the webserver host group. Define a rule
variable with a value of http.

- name: Configure web server
 hosts: webserver
 vars:
 rule: http

3.2. Continue editing the playbook.yml file. Define the first task, which uses the
include_vars module to import extra variables in the playbook. The variables are
used by other tasks in the playbook. Include the variables.yml variable file created
previously.

 tasks:
 - name: Include the variables from the YAML file
 include_vars: vars/variables.yml

3.3. Define the second task which uses the include module to include the base
environment.yml playbook. Because the three defined variables are used in the
base playbook, but are not defined, include a vars block. Set three variables in the
vars section: package set as httpd, service set as httpd, and svc_state set as
started.

 - name: Include the environment file and set the variables
 include: tasks/environment.yml
 vars:
 package: httpd
 service: httpd
 svc_state: started

3.4. Create three more tasks: one that installs the firewalld package, one that starts the
firewalld service, and one that adds a rule for the HTTP service. Use the variables
that were defined previously.

Chapter 4. Managing Variables and Inclusions

134 DO407-A2.3-en-2-20170725

Create a task that installs the firewalld package using the firewall_pkg variable.

 - name: Install the firewall
 yum:
 name: "{{ firewall_pkg }}"
 state: latest

Create a task that starts the firewalld service.

 - name: Start the firewall
 service:
 name: firewalld
 state: started
 enabled: true

Create a task that adds a firewall rule for the HTTP service using the rule variable.

 - name: Open the port for {{ rule }}
 firewalld:
 service: "{{ rule }}"
 immediate: true
 permanent: true
 state: enabled

3.5. Finally, add a task that creates the index.html file for the web server using the copy
module. Create the file with the Ansible ansible_fqdn fact, which returns the fully
qualified domain name. Also include a time stamp in the file using an Ansible fact. The
task should read as follows:

 - name: Create index.html
 copy:
 content: "{{ ansible_fqdn }} has been customized using Ansible on the
 {{ ansible_date_time.date }}\n"
 dest: /var/www/html/index.html

3.6. When you have completed the main playbook.yml playbook, it should appear as
follows:

- name: Configure web server
 hosts: webserver
 vars:
 rule: http
 tasks:
 - name: Include the variables from the YAML file
 include_vars: vars/variables.yml

 - name: Include the environment file and set the variables
 include: tasks/environment.yml
 vars:
 package: httpd
 service: httpd
 svc_state: started

 - name: Install the firewall

DO407-A2.3-en-2-20170725 135

 yum:
 name: "{{ firewall_pkg }}"
 state: latest

 - name: Start the firewall
 service:
 name: firewalld
 state: started
 enabled: true

 - name: Open the port for {{ rule }}
 firewalld:
 service: "{{ rule }}"
 immediate: true
 permanent: true
 state: enabled

 - name: Create index.html
 copy:
 content: "{{ ansible_fqdn }} has been customized using Ansible on the
 {{ ansible_date_time.date }}\n"
 dest: /var/www/html/index.html

4. Before running the playbook, verify its syntax is correct by running ansible-playbook
--syntax-check. If it reports any errors, correct them before moving to the next step. You
should see output similar to the following:

[student@workstation dev-vars-inclusions]$ ansible-playbook --syntax-check
 playbook.yml

playbook: playbook.yml

5. Run the playbook using the ansible-playbook command. Watch the output as Ansible
starts by including the environment.yml playbook and running its tasks, then keeps
executing the tasks defined in the main playbook.

[student@workstation dev-vars-inclusions]$ ansible-playbook playbook.yml
PLAY [Configure web server]***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Include the variables from the YAML file] ****************************
ok: [servera.lab.example.com]

TASK [Install and start the web server] ************************************
changed: [servera.lab.example.com]

TASK [Start the service] ***
changed: [servera.lab.example.com]

TASK [Install the firewall] **
changed: [servera.lab.example.com]

TASK [Start the firewall] **
changed: [servera.lab.example.com]

TASK [Open the port for http] **
changed: [servera.lab.example.com]

Chapter 4. Managing Variables and Inclusions

136 DO407-A2.3-en-2-20170725

TASK [Create index.html] ***
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=9 changed=4 unreachable=0 failed=0

6. Use curl to ensure the web server is reachable from workstation. Because the
index.html has been created, the output should appear as follows:

[student@workstation dev-vars-inclusions]$ curl http://servera.lab.example.com
servera.lab.example.com has been customized using Ansible on the 2017-07-21

Evaluation

Run the lab manage-variables-inclusions command from workstation to confirm
success on this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab manage-variables-inclusions grade

Cleanup

Run the lab manage-variables-inclusions cleanup command to clean up after the lab.

[student@workstation ~]$ lab manage-variables-inclusions cleanup

Lab: Managing Variables and Inclusions

DO407-A2.3-en-2-20170725 137

Lab: Managing Variables and Inclusions

In this lab, you will deploy a database as well as a web server. For this lab, various Ansible
modules, variables, and tasks will be defined.

Outcomes

You should be able to:

• Define variables in a playbook.

• Create custom facts for a managed host and use these facts in the main playbook.

• Create a separate set of tasks to include in the main playbook.

• Define a variable in a variable file and include the variable file in the main playbook.

Before you begin

From workstation.lab.example.com, open a new terminal and run the setup script to
prepare the environment. The script creates the project directory, called lab-managing-vars,
and populates it with an Ansible configuration file and host inventory.

[student@workstation ~]$ lab manage-variables setup

Steps

1. Create all of the files related to this lab in, or below, the lab-managing-vars project
directory.

2. Defining custom facts

Create a facts file in INI format called custom.fact. Create a section called packages and
define two facts: one called db_package, with a value of mariadb-server, and one called
web_package, with a value of httpd. Create a section called services with two facts: one
called db_service, with a value of mariadb, and one called web_service, with a value of
httpd.

Define a playbook, called setup_facts.yml, that will install the facts on serverb.

3. Installing facts

Run the playbook to install the custom facts and verify the facts are available as Ansible
facts.

4. Defining variables

Create a directory for variables, called vars. Define a YAML variable file, called main.yml,
in that directory that defines a new variable, called web_root, with a value of /var/www/
html.

5. Defining tasks

From the project directory, lab-managing-vars, create a directory for tasks, called
tasks. Define a task file in the subdirectory, called main.yml, that instructs Ansible to

Chapter 4. Managing Variables and Inclusions

138 DO407-A2.3-en-2-20170725

install both the web server package and the database package using facts Ansible gathered
from serverb.lab.example.com. When they are installed, start the two services.

6. Defining the main playbook

Create the main playbook, playbook.yml, in the top-level directory for this lab. The
playbook should be in the following order: target the lamp hosts group and define a new
variable, firewall, with a value of firewalld.

Create the following tasks:

• A task that includes the variable file, main.yml.

• A task that includes the tasks defined in the tasks file.

• A task for installing the latest version of the firewall package.

• A task for for starting the firewall service.

• A task for opening TCP port 80 permanently.

• A task that uses the copy module to create the index.html page in the directory the
variable defines.

The index.html should appear as follows:

serverb.lab.example.com (172.25.250.11) has been customized by Ansible

Both the host name and the IP address should use Ansible facts.

7. Running the playbook

Run the playbook playbook.yml created in the previous step.

8. Testing the deployment

From workstation, use curl to ensure the web server is reachable. Also use an ad hoc
command to connect to serverb as the devops user and ensure the mariadb service is
running.

Evaluation

Run the lab manage-variables grade command from workstation to confirm success on
this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab manage-variables grade

Cleanup

Run the lab manage-variables cleanup command to cleanup after the lab.

[student@workstation ~]$ lab manage-variables cleanup

Solution

DO407-A2.3-en-2-20170725 139

Solution

In this lab, you will deploy a database as well as a web server. For this lab, various Ansible
modules, variables, and tasks will be defined.

Outcomes

You should be able to:

• Define variables in a playbook.

• Create custom facts for a managed host and use these facts in the main playbook.

• Create a separate set of tasks to include in the main playbook.

• Define a variable in a variable file and include the variable file in the main playbook.

Before you begin

From workstation.lab.example.com, open a new terminal and run the setup script to
prepare the environment. The script creates the project directory, called lab-managing-vars,
and populates it with an Ansible configuration file and host inventory.

[student@workstation ~]$ lab manage-variables setup

Steps

1. Create all of the files related to this lab in, or below, the lab-managing-vars project
directory.

[student@workstation ~]$ cd ~/lab-managing-vars
[student@workstation lab-managing-vars]$

2. Defining custom facts

Create a facts file in INI format called custom.fact. Create a section called packages and
define two facts: one called db_package, with a value of mariadb-server, and one called
web_package, with a value of httpd. Create a section called services with two facts: one
called db_service, with a value of mariadb, and one called web_service, with a value of
httpd.

Define a playbook, called setup_facts.yml, that will install the facts on serverb.

2.1. Create the fact file custom.fact. The file should appear as follows:

[packages]
db_package = mariadb-server
web_package = httpd

[services]
db_service = mariadb
web_service = httpd

2.2. From the project directory, create the setup_facts.yml playbook to install the facts
on the managed host, serverb.lab.example.com. Use the file and copy modules
to install the custom facts. The playbook should appear as follows:

Chapter 4. Managing Variables and Inclusions

140 DO407-A2.3-en-2-20170725

- name: Install remote facts
 hosts: lamp
 vars:
 remote_dir: /etc/ansible/facts.d
 facts_file: custom.fact
 tasks:
 - name: Create the remote directory
 file:
 state: directory
 recurse: yes
 path: "{{ remote_dir }}"
 - name: Install the new facts
 copy:
 src: "{{ facts_file }}"
 dest: "{{ remote_dir }}"

3. Installing facts

Run the playbook to install the custom facts and verify the facts are available as Ansible
facts.

3.1. Before running the playbook, verify its syntax is correct by running ansible-
playbook --syntax-check. If it reports any errors, correct them before moving to
the next step. You should see output similar to the following:

[student@workstation lab-managing-vars]$ ansible-playbook --syntax-check
 setup_facts.yml

playbook: setup_facts.yml

3.2. Run the playbook.

[student@workstation lab-managing-vars]$ ansible-playbook setup_facts.yml
PLAY [Install remote facts] **

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [Create the remote directory] ***
changed: [serverb.lab.example.com]

TASK [Install the new facts] ***
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

3.3. Ensure the newly created facts can be retrieved.

[student@workstation lab-managing-vars]$ ansible lamp -m setup -a
 'filter=ansible_local*'
serverb.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_local": {
 "custom": {

Solution

DO407-A2.3-en-2-20170725 141

 "packages": {
 "db_package": "mariadb-server",
 "web_package": "httpd"
 },
 "services": {
 "db_service": "mariadb",
 "web_service": "httpd"
 }
 }
 }
 },
 "changed": false
}

4. Defining variables

Create a directory for variables, called vars. Define a YAML variable file, called main.yml,
in that directory that defines a new variable, called web_root, with a value of /var/www/
html.

4.1. Create the variables directory, vars, inside the project directory.

[student@workstation lab-managing-vars]$ mkdir vars

4.2. Create the variables file vars/main.yml. The file should contain the following content:

web_root: /var/www/html

5. Defining tasks

From the project directory, lab-managing-vars, create a directory for tasks, called
tasks. Define a task file in the subdirectory, called main.yml, that instructs Ansible to
install both the web server package and the database package using facts Ansible gathered
from serverb.lab.example.com. When they are installed, start the two services.

5.1. Create the tasks directory inside the project directory.

[student@workstation lab-managing-vars]$ mkdir tasks

5.2. Create the tasks file, tasks/main.yml. The tasks should install both the database and
the web server, and start the services httpd and mariadb. Use the custom Ansible
facts for the name of the services to manage. The file should appear as follows:

 - name: Install and start the database and web servers
 yum:
 name:
 - "{{ ansible_local.custom.packages.db_package }}"
 - "{{ ansible_local.custom.packages.web_package }}"
 state: latest

 - name: Start the database service
 service:
 name: "{{ ansible_local.custom.services.db_service }}"

Chapter 4. Managing Variables and Inclusions

142 DO407-A2.3-en-2-20170725

 state: started
 enabled: true

 - name: Start the web service
 service:
 name: "{{ ansible_local.custom.services.web_service }}"
 state: started
 enabled: true

6. Defining the main playbook

Create the main playbook, playbook.yml, in the top-level directory for this lab. The
playbook should be in the following order: target the lamp hosts group and define a new
variable, firewall, with a value of firewalld.

Create the following tasks:

• A task that includes the variable file, main.yml.

• A task that includes the tasks defined in the tasks file.

• A task for installing the latest version of the firewall package.

• A task for for starting the firewall service.

• A task for opening TCP port 80 permanently.

• A task that uses the copy module to create the index.html page in the directory the
variable defines.

The index.html should appear as follows:

serverb.lab.example.com (172.25.250.11) has been customized by Ansible

Both the host name and the IP address should use Ansible facts.

6.1. The following steps edit the single playbook.yml file.

Create the main playbook, playbook.yml, for the hosts in the lamp hosts group, and
define the firewall variable.

- name: Install and configure lamp
 hosts: lamp
 vars:
 firewall: firewalld

6.2. Add the tasks block and define the first task that includes the variables file located
under vars/main.yml.

 tasks:
 - name: Include the variable file
 include_vars: vars/main.yml

6.3. Create the second task, which imports the tasks file located under tasks/main.yml.

Solution

DO407-A2.3-en-2-20170725 143

 - name: Include the tasks
 include: tasks/main.yml

6.4. Create the tasks that install the firewall, start the service, open port 80, and reload the
service.

 - name: Install the firewall
 yum:
 name: "{{ firewall }}"
 state: latest

 - name: Start the firewall
 service:
 name: "{{ firewall }}"
 state: started
 enabled: true

 - name: Open the port for the web server
 firewalld:
 service: http
 state: enabled
 immediate: true
 permanent: true

6.5. Finally, create the task that uses the copy module to create a custom main page,
index.html. Use the variable web_root, defined in the variables file, for the home
directory of the web server.

 - name: Create index.html
 copy:
 content: "{{ ansible_fqdn }}({{ ansible_default_ipv4.address }}) has
 been customized by Ansible\n"
 dest: "{{ web_root }}/index.html"

6.6. When complete, the tree should appear as follows:

[student@workstation lab-managing-vars]$ tree
.
├── ansible.cfg
├── custom.fact
├── inventory
├── playbook.yml
├── setup_facts.yml
├── tasks
│ └── main.yml
└── vars
 └── main.yml

2 directories, 7 files

6.7. The main playbook should appear as follows:

- name: Install and configure lamp
 hosts: lamp

Chapter 4. Managing Variables and Inclusions

144 DO407-A2.3-en-2-20170725

 vars:
 firewall: firewalld

 tasks:
 - name: Include the variable file
 include_vars: vars/main.yml

 - name: Include the tasks
 include: tasks/main.yml

 - name: Install the firewall
 yum:
 name: "{{ firewall }}"
 state: latest

 - name: Start the firewall
 service:
 name: "{{ firewall }}"
 state: started
 enabled: true

 - name: Open the port for the web server
 firewalld:
 service: http
 state: enabled
 immediate: true
 permanent: true

 - name: Create index.html
 copy:
 content: "{{ ansible_fqdn }}({{ ansible_default_ipv4.address }}) has
 been customized by Ansible\n"
 dest: "{{ web_root }}/index.html"

7. Running the playbook

Run the playbook playbook.yml created in the previous step.

7.1. Before running the playbook, verify its syntax is correct by running ansible-
playbook --syntax-check. If it reports any errors, correct them before moving to
the next step. You should see output similar to the following:

[student@workstation lab-managing-vars]$ ansible-playbook --syntax-check
 playbook.yml

playbook: playbook.yml

7.2. Using the ansible-playbook command, run the playbook.

[student@workstation lab-managing-vars]$ ansible-playbook playbook.yml
PLAY [Install and configure lamp]***

... Output omitted ...

PLAY RECAP ***
serverb.lab.example.com : ok=9 changed=5 unreachable=0 failed=0

8. Testing the deployment

Solution

DO407-A2.3-en-2-20170725 145

From workstation, use curl to ensure the web server is reachable. Also use an ad hoc
command to connect to serverb as the devops user and ensure the mariadb service is
running.

8.1. From workstation, use curl to ensure the web server has been successfully started
and it is reachable. If the following message appears, it indicates that the web server
has been installed, the firewall has been updated with a new rule and the included
variable has been successfully used.

[student@workstation lab-managing-vars]$ curl http://serverb
serverb.lab.example.com(172.25.250.11) has been customized by Ansible

8.2. Use an ad hoc Ansible command to ensure the mariadb service is running on
serverb.lab.example.com.

[student@workstation lab-managing-vars]$ ansible lamp -a 'systemctl status
 mariadb'
serverb.lab.example.com | SUCCESS | rc=0 >>
● mariadb.service - MariaDB database server
 Loaded: loaded (/usr/lib/systemd/system/mariadb.service; disabled; vendor
 preset: disabled)
 Active: active (running) since Fri 2016-04-01 10:50:40 PDT; 7min ago
... Output omitted ...

Evaluation

Run the lab manage-variables grade command from workstation to confirm success on
this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab manage-variables grade

Cleanup

Run the lab manage-variables cleanup command to cleanup after the lab.

[student@workstation ~]$ lab manage-variables cleanup

Chapter 4. Managing Variables and Inclusions

146 DO407-A2.3-en-2-20170725

Summary

In this chapter, you learned:

• Ansible variables allow administrators to reuse values across files in an entire Ansible project

• Variables have names which consist of a string that must start with a letter and can only
contain letters, numbers, and underscores

• Variables can be defined for hosts and host groups in the inventory, for playbooks, by facts and
external files, and from the command line

• It is better to store inventory variables in files in the host_vars and group_vars directory
relative to the inventory than in the inventory file itself

• Ansible facts are variables that are automatically discovered by Ansible from a managed host

• In a playbook, when a variable is used at the start of a value, quotes are mandatory

• The register keyword can be used to capture the output of a command in a variable.

• Both include and include_vars modules can be used to include tasks or variable files in
YAML or JSON format in playbooks.

DO407-A2.3-en-2-20170725 147

TRAINING

CHAPTER 5

IMPLEMENTING TASK CONTROL

Overview

Goal Manage task control, handlers, and tags in Ansible playbooks

Objectives • Construct conditionals and loops in a playbook

• Implement handlers in a playbook

• Implement tags in a playbook

• Resolve errors in a playbook

Sections • Constructing Flow Control (and Guided Exercise)

• Implementing Handlers (and Guided Exercise)

• Implementing Tags (and Guided Exercise)

• Handling Errors (and Guided Exercise)

Lab • Implementing Task Control

Chapter 5. Implementing Task Control

148 DO407-A2.3-en-2-20170725

Constructing Flow Control

Objectives
After completing this section, students should be able to:

• Implement loops in playbooks

• Construct conditionals in playbooks

• Combine loops and conditionals

Task Iteration with Loops
Ansible supports several different ways to iterate a task over a set of items using a loop. Loops
can repeat a task using each item in a list, the contents of each of the files in a list, a generated
sequence of numbers, or using more complicated structures.

Using loops saves administrators from the need to write multiple tasks that use the same
module. For example, instead of writing five tasks to ensure five users exist, one task can be
written that iterates over a list of five users to ensure they all exist.

Simple Loops

A simple loop iterates a task over a list of items. The with_items key is added to the task, and
takes as a value the list of items over which the task should be iterated. The loop variable item
holds the current value being used for this iteration.

Consider the following snippet that uses the service module twice in order to ensure two
network services are running:

- name: Postfix is running
 service:
 name: postfix
 state: started

- name: Dovecot is running
 service:
 name: dovecot
 state: started

These two tasks can be rewritten to use a simple loop, so that only one task is needed to ensure
both services are running:

- name: Postfix and Dovecot are running
 service:
 name: "{{ item }}"
 state: started
 with_items:
 - postfix
 - dovecot

The list used by with_items can be provided by a variable. In the following example, the
variable mail_services contains the list of services that need to be running.

vars:

Task Iteration with Loops

DO407-A2.3-en-2-20170725 149

 mail_services:
 - postfix
 - dovecot

tasks:
 - name: Postfix and Dovecot are running
 service:
 name: "{{ item }}"
 state: started
 with_items: "{{ mail_services }}"

Simple Loops over Lists of Hash/Dictionaries

The with_items list does not need to be a list of simple values. In the following example, each
item in the list is actually a hash/dictionary. Each hash/dictionary in the example has two keys,
name and groups, and the value of each key in the current item loop variable can be retrieved
with the item.name and item.groups variables, respectively.

- name: Users exist and are in the correct groups
 user:
 name: "{{ item.name }}"
 state: present
 groups: "{{ item.groups }}"
 with_items:
 - { name: 'jane', groups: 'wheel' }
 - { name: 'joe', groups: 'root' }

The outcome of the preceding task is that user jane is present and a member of group wheel,
and that user joe is present and a member of group root.

Nested Loops

The with_nested key is used for nested loops, loops run inside of loops. It takes a list of two or
more lists. For example, given a list of two lists, the task will iterate each item in the first list in
combination with each item in the second list.

To illustrate this better, look at the following snippet from a play. The mysql_user module is
used to grant all users in the first list all MySQL privileges to all tables of all databases named in
the second list, using nested loops.

tasks:
 - name: All DB users have privileges on all databases
 mysql_user:
 name: "{{ item[0] }}"
 priv: "{{ item[1] }}.*:ALL"
 append_privs: yes
 password: redhat
 with_nested:
 - ['joe', 'jane']
 - ['clientdb', 'employeedb', 'providerdb']

The preceding example iterates six times. It adds privileges for user joe to each of the three
databases, one at a time, and then does the same for user jane.

The list items in the with_nested list can be defined in variables. The previous example can be
rewritten to use variables to contain the lists of database users and databases:

vars:
 db_users:
 - joe

Chapter 5. Implementing Task Control

150 DO407-A2.3-en-2-20170725

 - jane

 databases:
 - clientdb
 - employeedb
 - providerdb

tasks:
 - name: All DB users have privileges on all databases
 mysql_user:
 name: "{{ item[0] }}"
 priv: "{{ item[1] }}.*:ALL"
 append_privs: yes
 password: redhat
 with_nested:
 - "{{ db_users }}"
 - "{{ databases }}"

Other Common Loop Directives

The following table shows some additional types of loops supported by Ansible.

Ansible Loops

Loop Keyword Description

with_file Takes a list of control node file names. item is set to the content of
each file in sequence.

with_fileglob Takes a file name globbing pattern. item is set to each file in
a directory on the control node that matches that pattern, in
sequence, non-recursively.

with_sequence Generates a sequence of items in increasing numerical order. Can
take start and end arguments which have a decimal, octal, or
hexadecimal integer value.

with_random_choice Takes a list. item is set to one of the list items at random.

Running Tasks Conditionally
Ansible can use conditionals to execute tasks or plays when certain conditions are met. For
example, a conditional can be used to determine the available memory on a managed host before
Ansible installs or configures a service.

Conditionals allow administrators to differentiate between managed hosts and assign them
functional roles based on the conditions that they meet. Playbook variables, registered variables,
and Ansible facts can all be tested with conditionals. Operators such as string comparison,
mathematical operators, and Booleans are available.

The following examples illustrate some ways in which conditionals can be used by Ansible.

• A hard limit can be defined in a variable (for example, min_memory) and compared against the
available memory on a managed host.

• The output of a command can be captured and evaluated by Ansible to determine whether or
not a task completed before taking further action. For example, if a program fails, then a batch
will need to be skipped.

• Ansible facts can be used to determine the managed host network configuration and decide
which template file to send (for example, network bonding or trunking).

Running Tasks Conditionally

DO407-A2.3-en-2-20170725 151

• The number of CPUs can be evaluated to determine how to properly tune a web server.

• Registered variables can be compared with defined variables to check a service change. For
example, this can be used to verify the MD5 checksum of a file.

Ansible when Statement

The when statement is used to run a task conditionally. It takes as a value the condition to test. If
the condition is met, the task runs. If the condition is not met, the task is skipped.

One of the simplest conditions which can be tested is whether a Boolean variable is true or false.
The when statement in the following example causes the task to run only if run_my_task is
true:

- hosts: all
 vars:
 run_my_task: true

 tasks:
 - name: httpd package is installed
 yum:
 name: httpd
 when: run_my_task

The next example is a bit more sophisticated, and tests whether the my_service variable has
a value. If it does, the value of my_service is used as the name of the package to install. If the
my_service variable is not defined, then the task is skipped without an error.

- hosts: all
 vars:
 my_service: httpd

 tasks:
 - name: "{{ my_service }} package is installed"
 yum:
 name: "{{ my_service }}"
 when: my_service is defined

The following table shows some of the operators that administrators can use when working with
conditionals:

Example Conditionals

Operator Example

Equal (value is a string) ansible_machine == "x86_64"

Equal (value is numeric) max_memory == 512

Less than min_memory < 128

Greater than min_memory > 256

Less than or equal to min_memory <= 256

Greater than or equal to min_memory >= 512

Not equal to min_memory != 512

Variable exists min_memory is defined

Chapter 5. Implementing Task Control

152 DO407-A2.3-en-2-20170725

Operator Example

Variable does not exist min_memory is not defined

Variable is set to 1, True, or yes available_memory

Variable is set to 0, False, or no not available_memory

First variable's value is present as a value in
second variable's list

my_special_user in superusers

The last entry in the preceding table might be a bit confusing at first. In the example for that
entry, my_special_user is a variable which has some value. The variable superusers is a
variable which has a list for a value. If the value of my_special_user is in the superusers list,
the conditional passes and the task runs.

The following example will use this type of conditional. Given the variable settings and the
conditional shown in the example, the task will run:

- hosts: all
 vars:
 my_special_user: devops

 superusers:
 - root
 - devops
 - toor

 tasks:
 - name: Task runs if my_special_user is in superusers
 user:
 name: "{{ my_special_user }}"
 groups: wheel
 append: yes
 when: my_special_user in superusers

Here is another example using the same kind of conditional. It uses two magic variables
that Ansible automatically sets. The task will only run if the value of the managed host's
inventory_hostname variable (containing the name of the managed host from the inventory
file) is listed as a member of the host group databases.

- name: Create the database admin
 user:
 name: db_admin
 when: inventory_hostname in groups["databases"]

(Magic variables are discussed in more depth in the Ansible documentation at http://
docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-
information-about-other-hosts.)

http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts
http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts

Combining Loops and Conditional Tasks

DO407-A2.3-en-2-20170725 153

Important
Notice the indentation of the when statement. Because the when statement is not a
module variable, it must be placed "outside" the module by being indented at the top
level of the task.

A task is a YAML hash/dictionary, and the when statement is simply one more key in
the task like the task's name and the module it uses. A common convention places
any when directive that might be present after the task's name and the module (and
module arguments).

Testing Multiple Conditions

One when statement can be used to evaluate multiple values. To do so, conditionals can be
combined with the and and or keywords or grouped with parentheses.

The following snippets show some examples of how to express multiple conditions.

• With the and operation, both conditions have to be true for the entire conditional statement to
be met. For example, the following condition will be met if the installed kernel is the specified
version and if the inventory_hostname is in the staging group:

ansible_kernel == 3.10.0-327.el7.x86_64 and inventory_hostname in groups['staging']

• If a conditional statement should be met when either condition is true, then the or statement
should be used. For example, the following condition is met if the machine is running either
Red Hat Enterprise Linux or Fedora:

ansible_distribution == "RedHat" or ansible_distribution == "Fedora"

• More complex conditional statements can be clearly expressed through grouping conditions
with parentheses to ensure that they are correctly interpreted. For example, the following
conditional statement is met if the machine is running either Red Hat Enterprise Linux 7 or
Fedora 23:

(ansible_distribution == "RedHat" and ansible_distribution_major_version == 7) or
 (ansible_distribution == "Fedora" and ansible_distribution_major_version == 23)

Combining Loops and Conditional Tasks
Loops and conditionals can be combined. In the following example, the mariadb-server package
will be installed by the yum module if there is a file system mounted on / with more than 300 MB
free. The ansible_mounts fact is a list of dictionaries, each one representing facts about
one mounted file system. The loop iterates over each dictionary in the list, and the conditional
statement is not met unless a dictionary is found representing a mounted file system where both
conditions are true.

- name: install mariadb-server if enough space on root
 yum:
 name: mariadb-server
 state: latest

Chapter 5. Implementing Task Control

154 DO407-A2.3-en-2-20170725

 with_items: "{{ ansible_mounts }}"
 when: item.mount == "/" and item.size_available > 300000000

Important
When combining when with with_items, be aware that the when statement is
processed for each item.

Here is another example combining conditionals and registered variables. The following
annotated playbook will restart the httpd service only if the postfix service is running.

- hosts: all
 tasks:
 - name: Postfix server status

 command: /usr/bin/systemctl is-active postfix

 ignore_errors: yes

 register: result

 - name: Restart Apache HTTPD if Postfix running
 service:
 name: httpd
 state: restarted

 when: result.rc == 0

Is Postfix running or not?

If it is not running and the command "fails", do not stop processing

Saves information on the module's result in a variable named result

Evaluates the output of the Postfix task. If the exit code of the systemctl command is 0,
then Postfix is active and this task will restart the httpd service.

References
Loops — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_loops.html

Conditionals — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_conditionals.html

What Makes A Valid Variable Name — Variables — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_variables.html#what-makes-a-valid-
variable-name

http://docs.ansible.com/ansible/playbooks_loops.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_variables.html#what-makes-a-valid-variable-name
http://docs.ansible.com/ansible/playbooks_variables.html#what-makes-a-valid-variable-name

Guided Exercise: Constructing Flow Control

DO407-A2.3-en-2-20170725 155

Guided Exercise: Constructing Flow Control

In this exercise, you will construct conditionals and loops in Ansible playbooks

Outcomes

You should be able to:

• Implement Ansible conditionals using the when statement.

• Use Ansible with_items loops in conjunction with conditionals.

Before you begin

From workstation, run the lab setup script to confirm the environment is ready for the lab to
begin. The script creates the working directory, called dev-flowcontrol, and populates it with
an Ansible configuration file and host inventory.

[student@workstation ~]$ lab task-control-flowcontrol setup

Steps

1. As the student user on workstation, change to the directory, /home/student/dev-
flowcontrol.

[student@workstation ~]$ cd ~/dev-flowcontrol
[student@workstation dev-flowcontrol]$

2. Create a task file named configure_database.yml. This will define the tasks to install
the extra packages, update /etc/my.cnf from a copy stored on a web site, and start
mariadb on the managed hosts. The include file can and will use the variables you defined
in the playbook.yml file and inventory. The get_url module will need to set force=yes
so that the my.cnf file is updated even if it already exists on the managed host, and will
need to set correct permissions as well as SELinux contexts on the /etc/my.cnf file. When
you are finished, save the file and exit the editor. The file should read as follows:

 - yum:
 name: "{{ extra_packages }}"

 - get_url:
 url: "http://materials.example.com/task_control/my.cnf"
 dest: "{{ configure_database_path }}"
 owner: mysql
 group: mysql
 mode: 0644
 seuser: system_u
 setype: mysqld_etc_t
 force: yes

 - service:
 name: "{{ db_service }}"
 state: started
 enabled: true

Chapter 5. Implementing Task Control

156 DO407-A2.3-en-2-20170725

3. In the same directory, create the playbook.yml playbook. Define a list variable,
db_users, that consists of a list of two users, db_admin and db_user. Add a
configure_database_path variable set to the file /etc/my.cnf.

Create a task that uses a loop to create the users only if the managed host belongs to the
databases host group. The file should read as follows:

- hosts: all
 vars:
 db_package: mariadb-server
 db_service: mariadb
 db_users:
 - db_admin
 - db_user
 configure_database_path: /etc/my.cnf

 tasks:
 - name: Create the MariaDB users
 user:
 name: "{{ item }}"
 with_items: "{{ db_users }}"
 when: inventory_hostname in groups['databases']

4. In the playbook, add a task that uses the db_package variable to install the database
software, only if the variable has been defined. The task should read as follows:

 - name: Install the database server
 yum:
 name: "{{ db_package }}"
 when: db_package is defined

5. In the playbook, create a task to do basic configuration of the database. The task will
run only when configure_database_path is defined. This task should include the
configure_database.yml task file and define a local array, extra_packages, which will
be used to specify additional packages needed for this configuration. Set that list variable to
include a list of three packages: mariadb-bench, mariadb-libs, and mariadb-test. When done,
save the playbook and exit the editor.

 - name: Configure the database software
 include: configure_database.yml
 vars:
 extra_packages:
 - mariadb-bench
 - mariadb-libs
 - mariadb-test
 when: configure_database_path is defined

6. Check the final playbook.yml file before running it. It should now read in its entirety:

- hosts: all
 vars:
 db_package: mariadb-server
 db_service: mariadb
 db_users:

DO407-A2.3-en-2-20170725 157

 - db_admin
 - db_user
 configure_database_path: /etc/my.cnf

 tasks:
 - name: Create the MariaDB users
 user:
 name: "{{ item }}"
 with_items: "{{ db_users }}"
 when: inventory_hostname in groups['databases']

 - name: Install the database server
 yum:
 name: "{{ db_package }}"
 when: db_package is defined

 - name: Configure the database software
 include: configure_database.yml
 vars:
 extra_packages:
 - mariadb-bench
 - mariadb-libs
 - mariadb-test
 when: configure_database_path is defined

7. Before running the playbook, verify its syntax is correct by running ansible-playbook
--syntax-check. If it reports any errors, correct them before moving to the next step. You
should see output similar to the following:

[student@workstation dev-flowcontrol]$ ansible-playbook --syntax-check playbook.yml

playbook: playbook.yml

8. Run the playbook to install and configure the database on the managed hosts.

[student@workstation dev-flowcontrol]$ ansible-playbook playbook.yml
PLAY [all] **

TASK [Gathering Facts] **
ok: [servera.lab.example.com]

... Output omitted ...

TASK [yum] **
changed: [servera.lab.example.com]

... Output omitted ...

The output confirms the task file has been successfully included and executed.

9. Manually verify that the necessary packages have been installed on servera, that the /
etc/my.cnf file is in place with the correct permissions, and that the two users have been
created.

9.1. Use an ad hoc command from workstation to servera to confirm the packages have
been installed.

Chapter 5. Implementing Task Control

158 DO407-A2.3-en-2-20170725

[student@workstation dev-flowcontrol]$ ansible all -a 'yum list installed
 mariadb-bench mariadb-libs mariadb-test'
... Output omitted ...

servera.lab.example.com | SUCCESS | rc=0 >>
Loaded plugins: langpacks, search-disabled-repos
Installed Packages
mariadb-bench.x86_64 1:5.5.52-1.el7 @rhel_dvd
mariadb-libs.x86_64 1:5.5.52-1.el7 installed
mariadb-test.x86_64 1:5.5.52-1.el7 @rhel_dvd

9.2. Confirm the my.cnf file has been successfully copied under /etc/.

[student@workstation dev-flowcontrol]$ ansible all -a 'grep Ansible /etc/my.cnf'
servera.lab.example.com | SUCCESS | rc=0 >>
Ansible file

9.3. Confirm the two users have been created.

[student@workstation dev-flowcontrol]$ ansible all -a 'id db_user'
servera.lab.example.com | SUCCESS | rc=0 >>
uid=1003(db_user) gid=1003(db_user) groups=1003(db_user)
[student@workstation dev-flowcontrol]$ ansible all -a 'id db_admin'
servera.lab.example.com | SUCCESS | rc=0 >>
uid=1002(db_admin) gid=1002(db_admin) groups=1002(db_admin)

Evaluation

Run the lab task-control-flowcontrol grade command from workstation to confirm
success on this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab task-control-flowcontrol grade

Cleanup

Run the lab task-control-flowcontrol cleanup command to cleanup after the lab.

[student@workstation ~]$ lab task-control-flowcontrol cleanup

Implementing Handlers

DO407-A2.3-en-2-20170725 159

Implementing Handlers

Objectives
After completing this section, students should be able to:

• Implement handlers in playbooks

Ansible Handlers
Ansible modules are designed to be idempotent. This means that in a properly written playbook,
the playbook and its tasks can be run multiple times without changing the managed host, unless
they need to make a change in order to get the managed host to the desired state.

However, sometimes when a task does make a change to the system, a further task may need to
be run. For example, a change to a service's configuration file may then require that the service
be reloaded so that the changed configuration takes effect.

Handlers are tasks that respond to a notification triggered by other tasks. Each handler has
a globally-unique name, and is triggered at the end of a block of tasks in a playbook. If no
task notifies the handler by name, it will not run. If one or more tasks notify the handler, it
will run exactly once after all other tasks in the play have completed. Because handlers are
tasks, administrators can use the same modules in handlers that they would for any other task.
Normally, handlers are used to reboot hosts and restart services.

Handlers can be seen as inactive tasks that only get triggered when explicitly invoked using a
notify statement. The following snippet shows how the Apache server is only restarted by the
restart_apache handler when a configuration file is updated and notifies it:

tasks:

 - name: copy demo.example.conf configuration template
 copy:
 src: /var/lib/templates/demo.example.conf.template
 dest: /etc/httpd/conf.d/demo.example.conf

 notify:

 - restart_apache

handlers:

 - name: restart_apache

 service:
 name: httpd
 state: restarted

The task that notifies the handler.

The notify statement indicates the task needs to trigger a handler.

The name of the handler to run.

The statement starts the handlers section.

The name of the handler invoked by tasks.

The module to use for the handler.

Chapter 5. Implementing Task Control

160 DO407-A2.3-en-2-20170725

In the previous example, the restart_apache handler will trigger when notified by the copy
task that a change happened. A task may call more than one handler in their notify section.
Ansible treats the notify statement as an array and iterates over the handler names:

tasks:
 - name: copy demo.example.conf configuration template
 copy:
 src: /var/lib/templates/demo.example.conf.template
 dest: /etc/httpd/conf.d/demo.example.conf
 notify:
 - restart_mysql
 - restart_apache

handlers:
 - name: restart_mysql
 service:
 name: mariadb
 state: restarted

 - name: restart_apache
 service:
 name: httpd
 state: restarted

Using Handlers
As discussed in the Ansible documentation, there are some important things to remember about
using handlers:

• Handlers are always run in the order in which the handlers section is written in the play, not
in the order in which they are listed by the notify statement on a particular task.

• Handlers run after all other tasks in the play complete. A handler called by a task in the
tasks: part of the playbook will not run until all of the tasks under tasks: have been
processed.

• Handler names live in a global namespace. If two handlers are incorrectly given the same
name, only one will run.

• Handlers defined inside an include can not be notified.

• Even if more than one task notifies a handler, the handler will only run once. If no tasks notify
it, a handler will not run.

• If a task that includes a notify does not execute (for example, a package is already installed),
the handler will not be notified. The handler will be skipped unless another task notifies it.
Ansible notifies handlers only if the task acquires the CHANGED status.

Important
Handlers are meant to perform an action upon the execution of a task; they should not
be used as a replacement for tasks.

Using Handlers

DO407-A2.3-en-2-20170725 161

References
Intro to Playbooks — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_intro.html

http://docs.ansible.com/ansible/playbooks_intro.html

Chapter 5. Implementing Task Control

162 DO407-A2.3-en-2-20170725

Guided Exercise: Implementing Handlers

In this exercise, you will implement handlers in playbooks.

Outcomes

You should be able to:

• Define handlers in playbooks and notify them for configuration change.

Before you begin

Run lab task-control-handlers setup from workstation to configure the environment
for the exercise. The script creates the dev-handlers project directory as well as the Ansible
configuration file and the host inventory file.

[student@workstation ~]$ lab task-control-handlers setup

Steps

1. From workstation.lab.example.com, open a new terminal and change to the dev-
handlers project directory.

[student@workstation ~]$ cd ~/dev-handlers
[student@workstation dev-handlers]$

2. In that directory, use a text editor to create the configure_db.yml playbook file. This file
will install a database server and create some users; when the database server is installed,
the playbook restarts the service.

2.1. Start the playbook with the initialization of some variables: db_packages, which
defines the name of the packages to install for the database service; db_service,
which defines the name of the database service; src_file for the URL of the
configuration file to install; and dst_file for the location of the installed configuration
file on the managed hosts. The playbook should read as follows:

- name: Installing Mariadb server
 hosts: databases
 vars:
 db_packages:
 - mariadb-server
 - MySQL-python
 db_service: mariadb
 src_file: "http://materials.example.com/task_control/my.cnf.template"
 dst_file: /etc/my.cnf

2.2. In the configure_db.yml file, define a task that uses the yum module to install
the required database packages as defined by the db_packages variable. Notify the
handler, start_service, in order to start the service. The task should read as follows:

 tasks:
 - name: Install {{ db_packages }} package
 yum:
 name: "{{ item }}"

DO407-A2.3-en-2-20170725 163

 state: latest
 with_items: "{{ db_packages }}"
 notify:
 - start_service

2.3. Add a task to download my.cnf.template to /etc/my.cnf on the managed
host, using the get_url module. Add a condition that notifies the handler,
restart_service, as well as set_password, to restart the database service and set
the administrative password. The task should read:

 - name: Download and install {{ dst_file }}
 get_url:
 url: "{{ src_file }}"
 dest: "{{ dst_file }}"
 owner: mysql
 group: mysql
 force: yes
 notify:
 - restart_service
 - set_password

2.4. Define the three handlers the tasks needs. The start_service handle will start the
mariadb service; the restart_service handler will restart the mariadb service;
and the set_password handler will set the administrative password for the database
service.

Define the start_service handler. It should read as follows:

 handlers:
 - name: start_service
 service:
 name: "{{ db_service }}"
 state: started

2.5. Define the second handler, restart_service. It should read as follows:

 - name: restart_service
 service:
 name: "{{ db_service }}"
 state: restarted

2.6. Finally, define the handler that sets the administrative password. The handler will use
the mysql_user module to perform the command. The handler should read as follows:

 - name: set_password
 mysql_user:
 name: root
 password: redhat

2.7. When completed, the playbook should look like the following:

- name: Installing Mariadb server

Chapter 5. Implementing Task Control

164 DO407-A2.3-en-2-20170725

 hosts: databases
 vars:
 db_packages:
 - mariadb-server
 - MySQL-python
 db_service: mariadb
 src_file: "http://materials.example.com/task_control/my.cnf.template"
 dst_file: /etc/my.cnf

 tasks:
 - name: Install {{ db_packages }} package
 yum:
 name: "{{ item }}"
 state: latest
 with_items: "{{ db_packages }}"
 notify:
 - start_service
 - name: Download and install {{ dst_file }}
 get_url:
 url: "{{ src_file }}"
 dest: "{{ dst_file }}"
 owner: mysql
 group: mysql
 force: yes
 notify:
 - restart_service
 - set_password

 handlers:
 - name: start_service
 service:
 name: "{{ db_service }}"
 state: started

 - name: restart_service
 service:
 name: "{{ db_service }}"
 state: restarted

 - name: set_password
 mysql_user:
 name: root
 password: redhat

3. Before running the playbook, verify its syntax is correct by running ansible-playbook
--syntax-check. If it reports any errors, correct them before moving to the next step. You
should see output similar to the following:

[student@workstation dev-handlers]$ ansible-playbook --syntax-check configure_db.yml

playbook: configure_db.yml

4. Run the configure_db.yml playbook. Notice the output shows the handlers are being
executed.

[student@workstation dev-handlers]# ansible-playbook configure_db.yml

PLAY [Installing Mariadb server]**

... Output omitted ...

DO407-A2.3-en-2-20170725 165

RUNNING HANDLER [start_service] **
changed: [servera.lab.example.com]

RUNNING HANDLER [restart_service] **
changed: [servera.lab.example.com]

RUNNING HANDLER [set_password] ***
changed: [servera.lab.example.com]

5. Run the playbook again. This time the handlers are skipped.

[student@workstation dev-handlers]# ansible-playbook configure_db.yml

PLAY [Installing Mariadb server]**

... Output omitted ...

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=0 unreachable=0 failed=0

6. Because handlers are executed once, they can help prevent failures. Update the playbook
to add a task after installing /etc/my.cnf that sets the MySQL admin password like the
set_password handler. This will show you why using a handler in this situation is better
than a simple task. The task should read as follows:

 - name: Set the MySQL password
 mysql_user:
 name: root
 password: redhat

7. Run the playbook again. The task should fail since the MySQL password has already been
set.

[student@workstation dev-handlers]# ansible-playbook configure_db.yml

TASK [Set the MySQL password] **
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failed": true,
 "msg": "unable to connect to database, check login_user and login_password are
 correct or /root/.my.cnf has the credentials. Exception message: (1045, \"Access
 denied for user 'root'@'localhost' (using password: NO)\")"}
 to retry, use: --limit @/home/student/dev-handlers/configure_db.retry

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=0 unreachable=0 failed=1

Evaluation

From workstation, run the lab task-control-handlers grade command to confirm
success on this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab task-control-handlers grade

Cleanup

Run the lab task-control-handlers cleanup command to clean up after completing the
lab.

Chapter 5. Implementing Task Control

166 DO407-A2.3-en-2-20170725

[student@workstation ~]$ lab task-control-handlers cleanup

Implementing Tags

DO407-A2.3-en-2-20170725 167

Implementing Tags

Objectives
After completing this section, students should be able to:

• Set tags to control which parts of a playbook should be run.

Tagging Ansible Resources
Sometimes it is useful to be able to run subsets of the tasks in a playbook. Tags can be applied
to specific resources as a text label in order to allow this. Tagging a resource only requires that
the tags keyword be used, followed by a list of tags to apply. When plays are tagged, the --
tags option can be used with ansible-playbook to filter the playbook to only execute specific
tagged plays. Tags are available for the following resources:

• In playbooks, each task can be tagged, using the tags keyword:

tasks:
 - name: Package {{ item }} is installed
 yum:
 name: "{{ item }}"
 state: installed
 with_items:
 - postfix
 - mariadb-server
 tags:
 - packages

• When a task file is included in a playbook, the task can be tagged, allowing administrators to
set a global tag for the include statement:

 - include: common.yml
 tags:
 - webproxy
 - webserver

Note
When tagging a role or an include statement, all tasks they define are also tagged.

 roles:
 - { role: databases, tags: ['production', 'staging'] }

Important
When roles or include statements are tagged, the tag is not a way to exclude some
of the tagged tasks the included files contain. Tags in this context are a way to apply a
global tag to all tasks.

Chapter 5. Implementing Task Control

168 DO407-A2.3-en-2-20170725

Managing Tagged Resources
When a tag has been applied to a resource, the ansible-playbook command can be used with
the --tags or --skip-tags argument to either execute the tagged resources, or prevent the
tagged resources from being included in the play. The following playbook contains two tasks; the
first one is tagged with the webserver tag, the other one does not have any tag associated with
it:

- name: Example play using tagging
 hosts:
 - servera.lab.example.com
 - serverb.lab.example.com

 tasks:
 - name: httpd is installed
 yum:
 name: httpd
 state: latest
 tags: webserver

 - name: postfix is installed
 yum:
 name: postfix
 state: latest

To only run the first task, the --tags argument can be used:

[user@demo ~]$ ansible-playbook main.yml --tags 'webserver'

PLAY [Example play using tagging] **

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [httpd is installed] **
ok: [servera.lab.example.com]
ok: [serverb.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=0 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=0 unreachable=0 failed=0

Because the --tags option was specified, the playbook only ran the task tagged with the
webserver tag. To skip tasks with a specific tag and only run the tasks without that tag, the --
skip-tags option can be used:

[user@demo ~]$ ansible-playbook main.yml --skip-tags 'webserver'

PLAY [Example play using tagging] **

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [postfix is installed] **
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

Special Tags

DO407-A2.3-en-2-20170725 169

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=0 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=0 unreachable=0 failed=0

Special Tags
Ansible has a special tag that can be assigned in a playbook: always. This tag causes the task
to always be executed even if the --skip-tags option is used, unless explicitly skipped with --
skip-tags always.

There are three special tags that can be used from the command-line with the --tags option:

1. The tagged keyword is used to run any tagged resource.

2. The untagged keyword does the opposite of the tagged keyword by excluding all tagged
resources from the play.

3. The all keyword allows administrators to include all tasks in the play. This is the default
behavior of the command line.

Demonstration: Implementing Tags
1. From workstation.lab.example.com, open a new terminal and change to the demo-

tags project directory. Create the prepare_db.yml task file and define a task that
installs the required services for the database. Tag the task as dev, and have it notify the
start_db handler. The file should read as follows:

- name: Install database packages
 yum:
 name: "{{ item }}"
 state: latest
 with_items: "{{ db_packages }}"
 tags:
 - dev
 notify:
 - start_db

2. Define a second task to retrieve the database configuration file if the dev tag is active in
the execution environment, and that restarts that database service. The task will use a
conditional to ensure the configuration file path is defined. The task should read as follows:

- name: Get small config file
 get_url:
 url: "{{ db_config_src_path_small }}"
 dest: "{{ db_config_path }}"
 when: db_config_src_path_small is defined
 notify:
 - restart_db
 tags:
 - dev

3. Define a third task to retrieve a different database configuration file if the prod tag is active
in the execution environment, and that restarts the database service. Like the previous task,
this task will use a conditional to ensure that the configuration file path is defined. The task
should read as follows:

Chapter 5. Implementing Task Control

170 DO407-A2.3-en-2-20170725

- name: Get large config file
 get_url:
 url: "{{ db_config_src_path_large }}"
 dest: "{{ db_config_path }}"
 when: db_config_src_path_large is defined
 notify:
 - restart_db
 tags:
 - prod

4. Define a task that sets the Message of The Day for the managed host. Tag the task with the
dev task. The task should read as follows:

- name: Update motd for development
 copy:
 content: "This is a development server"
 dest: /etc/motd
 tags:
 - dev

5. Repeat the previous step but change both the tag as well as the command. The task should
read as follows:

- name: Update motd for production
 copy:
 content: "This is a production server"
 dest: /etc/motd
 tags:
 - prod

6. When completed, the task file should read as follows:

- name: Install database packages
 yum:
 name: "{{ item }}"
 state: latest
 with_items: "{{ db_packages }}"
 tags:
 - dev
 notify:
 - start_db

- name: Get small config file
 get_url:
 url: "{{ db_config_src_path_small }}"
 dest: "{{ db_config_path }}"
 when: db_config_src_path_small is defined
 notify:
 - restart_db
 tags:
 - dev

- name: Get large config file
 get_url:
 url: "{{ db_config_src_path_large }}"
 dest: "{{ db_config_path }}"

Demonstration: Implementing Tags

DO407-A2.3-en-2-20170725 171

 when: db_config_src_path_large is defined
 notify:
 - restart_db
 tags:
 - prod

- name: Update motd for development
 copy:
 content: "This is a development server"
 dest: /etc/motd
 tags:
 - dev

- name: Update motd for production
 copy:
 content: "This is a production server"
 dest: /etc/motd
 tags:
 - prod

7. In the project directory, create the main playbook, playbook.yml for servers in the
databases group. The playbook will define the variables required by the task file upon
import. The playbook should read as follows:

- hosts: all
 vars:
 db_packages:
 - mariadb-server
 - MySQL-python
 db_config_url: http://materials.example.com/task_control
 db_config_src_path_small: "{{ db_config_url }}/my.cnf.small"
 db_config_src_path_large: "{{ db_config_url }}/my.cnf.large"
 db_config_path: /etc/my.cnf
 db_service: mariadb

8. Define the first task that includes the task file; the task file will use a conditional to ensure
the managed host is in the group databases. The task should read as follows:

 tasks:
 - include:
 prepare_db.yml
 when: inventory_hostname in groups['databases']

9. Define the two handlers the task file requires, start_db and restart_db. The handlers
block should read as follows:

 handlers:
 - name: start_db
 service:
 name: "{{ db_service }}"
 state: started

 - name: restart_db
 service:
 name: "{{ db_service }}"
 state: restarted

Chapter 5. Implementing Task Control

172 DO407-A2.3-en-2-20170725

10. When completed, the playbook should read as follows:

- hosts: all
 vars:
 db_packages:
 - mariadb-server
 - MySQL-python
 db_config_url: http://materials.example.com/task_control
 db_config_src_path_small: "{{ db_config_url }}/my.cnf.small"
 db_config_src_path_large: "{{ db_config_url }}/my.cnf.large"
 db_config_path: /etc/my.cnf
 db_service: mariadb

 tasks:
 - include:
 prepare_db.yml
 when: inventory_hostname in groups['databases']

 handlers:
 - name: start_db
 service:
 name: "{{ db_service }}"
 state: started

 - name: restart_db
 service:
 name: "{{ db_service }}"
 state: restarted

11. Run the playbook, applying the dev tag using the --tags option.

[student@workstation demo-tags]$ ansible-playbook playbook.yml --tags 'dev'
... Output omitted ...
TASK [Get small config file] ***
changed: [servera.lab.example.com]

TASK [Update motd for development] ***
changed: [servera.lab.example.com]
... Output omitted ...

Notice the configuration file that has been retrieved (my.cnf.small).

12. Run an ad hoc command to display the /etc/motd file on servera.

[student@workstation dev-tags]$ ansible databases -a 'cat /etc/motd'
servera.lab.example.com | SUCCESS | rc=0 >>
This is a development server

13. Run the playbook again, this time skipping the tasks tagged as dev:

[student@workstation demo-tags]$ ansible-playbook playbook.yml --skip-tags 'dev'
... Output omitted ...
TASK [Get large config file] ***
ok: [servera.lab.example.com]

TASK [Update motd for production] **
changed: [servera.lab.example.com]

Demonstration: Implementing Tags

DO407-A2.3-en-2-20170725 173

... Output omitted ...

14. Run an ad hoc command to display the /etc/motd file on servera.

[student@workstation dev-tags]$ ansible databases -a 'cat /etc/motd'
servera.lab.example.com | SUCCESS | rc=0 >>
This is a production server

References
Tags — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_tags.html

Task And Handler Organization For A Role — Best Practices — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_best_practices.html#task-and-handler-
organization-for-a-role

http://docs.ansible.com/ansible/playbooks_tags.html
http://docs.ansible.com/ansible/playbooks_best_practices.html#task-and-handler-organization-for-a-role
http://docs.ansible.com/ansible/playbooks_best_practices.html#task-and-handler-organization-for-a-role

Chapter 5. Implementing Task Control

174 DO407-A2.3-en-2-20170725

Guided Exercise: Implementing Tags

In this exercise, you will implement tags in a playbook and run the playbook.

Outcomes

You should be able to:

• Tag Ansible tasks.

• Filter tasks based on tags when running playbooks.

Before you begin

Run the lab task-control-tags setup command from workstation to prepare the
environment for this exercise. The script creates the working directory, dev-tags, and populates
it with an Ansible configuration file and host inventory.

[student@workstation ~]$ lab task-control-tags setup

Steps

1. Change to the dev-tags project directory that the lab script created.

[student@workstation ~]$ cd ~/dev-tags
[student@workstation dev-tags]$

2. The following steps will edit the same configure_mail.yml task file.

In the project directory, create the configure_mail.yml task file. The task file contains
instructions to install the required packages for the mail server, as well as instructions to
retrieve the configuration files for the mail server.

2.1. Create the first task that uses the yum module to install the postfix package. Notify the
start_postfix handler, and tag the task as server using the tags keyword. The
task should read as follows:

- name: Install postfix
 yum:
 name: postfix
 state: latest
 tags:
 - server
 notify:
 - start_postfix

2.2. Add a task that installs the dovecot package using the yum module. It should notify the
start_dovecot handler. Tag the task as client. The task should read as follows:

- name: Install dovecot
 yum:
 name: dovecot
 state: latest
 tags:
 - client

DO407-A2.3-en-2-20170725 175

 notify:
 - start_dovecot

2.3. Define a task that uses the get_url module to retrieve the Postfix configuration file.
Notify the restart_postfix handler and tag the task as server. The task should
read as follows:

- name: Download main.cf configuration
 get_url:
 url: http://materials.example.com/task_control/main.cf
 dest: /etc/postfix/main.cf
 tags:
 - server
 notify:
 - restart_postfix

2.4. When completed, the task file should read as follows:

- name: Install postfix
 yum:
 name: postfix
 state: latest
 tags:
 - server
 notify:
 - start_postfix

- name: Install dovecot
 yum:
 name: dovecot
 state: latest
 tags:
 - client
 notify:
 - start_dovecot

- name: Download main.cf configuration
 get_url:
 url: http://materials.example.com/task_control/main.cf
 dest: /etc/postfix/main.cf
 tags:
 - server
 notify:
 - restart_postfix

3. The following steps will edit the same playbook.yml playbook file.

3.1. Create a playbook file named playbook.yml. Define the playbook for all hosts. The
playbook should read as follows:

- hosts: all

3.2. Define the task that includes the task file configure_mail.yml using the include
module. Add a conditional to only run the task for the hosts in the mailservers group.
The task should read as follows:

Chapter 5. Implementing Task Control

176 DO407-A2.3-en-2-20170725

 tasks:
 - name: Include configure_mail.yml
 include:
 configure_mail.yml
 when: inventory_hostname in groups['mailservers']

3.3. Define the three handlers the task file requires: start_postfix, start_dovecot,
and restart_postfix.

Define start_postfix handler to start the mail server. The handler should read as
follows:

 handlers:
 - name: start_postfix
 service:
 name: postfix
 state: started

3.4. Define the start_dovecot handler to start the mail client. The handler should read as
follows:

 - name: start_dovecot
 service:
 name: dovecot
 state: started

3.5. Define the restart_postfix handler that restarts the mail server. The handler should
read as follows:

 - name: restart_postfix
 service:
 name: postfix
 state: restarted

3.6. When completed, the playbook should read as follows:

- hosts: all

 tasks:
 - name: Include configure_mail.yml
 include:
 configure_mail.yml
 when: inventory_hostname in groups['mailservers']

 handlers:
 - name: start_postfix
 service:
 name: postfix
 state: started

 - name: start_dovecot
 service:
 name: dovecot
 state: started

DO407-A2.3-en-2-20170725 177

 - name: restart_postfix
 service:
 name: postfix
 state: restarted

4. Before running the playbook, verify its syntax is correct by running ansible-playbook
--syntax-check. If it reports any errors, correct them before moving to the next step. You
should see output similar to the following:

[student@workstation dev-tags]$ ansible-playbook --syntax-check playbook.yml

playbook: playbook.yml

5. Run the playbook, only applying the server tagged tasks using the --tags option. Notice
how only the start_postfix handler gets triggered.

[student@workstation dev-tags]$ ansible-playbook playbook.yml --tags 'server'
... Output omitted ...
RUNNING HANDLER [start_postfix] **
changed: [servera.lab.example.com]
... Output omitted ...

6. Run an ad hoc command to ensure the postfix package has been successfully installed.

[student@workstation dev-tags]$ ansible mailservers -a 'yum list installed postfix'
servera.lab.example.com | SUCCESS | rc=0 >>
Loaded plugins: langpacks, search-disabled-repos
Installed Packages
postfix.x86_64 2:2.10.1-6.el7 @rhel_dvd

7. Run the playbook again, but this time skip the tasks tagged with the server tag. The play
will install the dovecot package, because the task is tagged with the client tag, and it will
trigger the start_dovecot handler.

[student@workstation dev-tags]$ ansible-playbook playbook.yml --skip-tags 'server'
... Output omitted ...
TASK [Install dovecot] ***
changed: [servera.lab.example.com]

RUNNING HANDLER [start_dovecot] **
changed: [servera.lab.example.com]
... Output omitted ...

8. Run an ad hoc command to ensure the dovecot package has been successfully installed.

[student@workstation dev-tags]$ ansible mailservers -a 'yum list installed dovecot'
servera.lab.example.com | SUCCESS | rc=0 >>
Loaded plugins: langpacks, search-disabled-repos
Installed Packages
dovecot.x86_64 1:2.2.10-7.el7 @rhel_dvd

Chapter 5. Implementing Task Control

178 DO407-A2.3-en-2-20170725

Evaluation

Run the lab task-control-tags grade command from workstation to confirm success
on this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab task-control-tags grade

Cleanup

Run the lab task-control-tags cleanup command to cleanup after the lab.

[student@workstation ~]$ lab task-control-tags cleanup

Handling Errors

DO407-A2.3-en-2-20170725 179

Handling Errors

Objectives
After completing this section, students should be able to:

• Resolve errors in a playbook.

Errors in Plays
Ansible evaluates the return code of each task to determine whether the task succeeded or
failed. Normally, when a task fails Ansible immediately aborts the rest of the play on that host,
skipping all subsequent tasks.

However, sometimes you may want to have play execution continue even if a task fails. For
example, you might expect that a particular task could fail, and a you might want to recover by
running some other task conditionally. There are a number of Ansible features that can be used
to manage task errors.

Ignoring Task Failure

By default, if a task fails, the play is aborted. However, this behavior can be overridden by
ignoring failed tasks. To do so, the ignore_errors keyword needs to be used in a task.

The following snippet shows how to use ignore_errors on a task to continue playbook
execution on the host even if the task fails. For example, if the notapkg package does not exist
the yum module will fail, but having ignore_errors set to yes will allow execution to continue.

- yum:
 name: notapkg
 state: latest
 ignore_errors: yes

Forcing Execution of Handlers after Task Failure

Normally when a task fails and the play aborts on that host, any handlers which had been
notified by earlier tasks in the play will not run. If you set the force_handlers: yes directive
on the play, then notified handlers will be called even if the play aborted because a later task
failed.

The following snippet shows hows to use the force_handlers keyword in a play to forcefully
execute the handler even if a task fails:

- hosts: all
 force_handlers: yes
 tasks:
 - name: a task which always notifies its handler
 command: /bin/true
 notify: restart the database

 - name: a task which fails because the package doesn't exist
 yum:
 name: notapkg
 state: latest

Chapter 5. Implementing Task Control

180 DO407-A2.3-en-2-20170725

 handlers:
 - name: restart the database
 service:
 name: mariadb
 state: restarted

Note
Remember that handlers are notified when a task reports a "changed" result but are
not notified when it reports an "ok" or "failed" result.

Specifying Task Failure Conditions

You can use the failed_when directive on a task to specify which conditions indicate that the
task has failed. This is often used with "run command" modules that may successfully execute a
command, but the command's output or exit code may indicate a failure.

For example, you can run a script that outputs an error message and use that message to define
the failed state for the task. The following snippet shows how the failed_when keyword can be
used in a task:

tasks:
 - shell: /usr/local/bin/create_users.sh
 register: command_result
 failed_when: "'Password missing' in command_result.stdout"

Specifying When a Task Reports "Changed" Results

When a task makes a change to a managed host, it reports the changed state and notifies
handlers. When a task does not need to make a change, it reports ok and does not notify
handlers.

The changed_when directive can be used to control when a task reports that it has changed.
For example, the shell module in the next example is being used to get a Kerberos credential
which will be used by subsequent tasks. It normally would always report "changed" when it runs.
To suppress that change, changed_when: false is set so that it only reports "ok" or "failed".

 - name: get Kerberos credentials as "admin"
 shell: echo "{{ krb_admin_pass }}" | kinit -f admin
 changed_when: false

Here is another example using the shell module that reports "changed" based on output of the
module that is collected by a registered variable:

tasks:
 - shell:
 cmd: /usr/local/bin/upgrade-database
 register: command_result
 changed_when: "'Success' in command_result.stdout"
 notify:
 - restart_database

handlers:

Errors in Plays

DO407-A2.3-en-2-20170725 181

 - name: restart_database
 service:
 name: mariadb
 state: restarted

Ansible Blocks and Error Handling

In playbooks, blocks are clauses that logically group tasks, and can be used to control how tasks
are executed. For example, a task block can have a when directive to apply a conditional to
multiple tasks:

- name: block example
 hosts: all
 tasks:
 - block:
 - name: package needed by yum
 yum:
 name: yum-plugin-versionlock
 state: present
 - name: lock version of tzdata
 lineinfile:
 dest: /etc/yum/pluginconf.d/versionlock.list
 line: tzdata-2016j-1
 state: present
 when: ansible_distribution == "RedHat"

Blocks also allow for error handling in combination with the rescue and always statements. If
any task in a block fails, tasks in its rescue block are executed in order to recover. After the
tasks in the block and possibly the rescue run, then tasks in its always block run. To summarize:

• block: Defines the main tasks to run.

• rescue: Defines the tasks that will be run if the tasks defined in the block clause fails.

• always: Defines the tasks that will always run independently of the success or failure of tasks
defined in the block and rescue clauses.

The following example shows how to implement a block in a playbook. Even if tasks defined in the
block clause fail, tasks defined in the rescue and always clauses will be executed.

 tasks:
 - block:
 - name: upgrade the database
 shell:
 cmd: /usr/local/lib/upgrade-database
 rescue:
 - name: revert the database upgrade
 shell:
 cmd: /usr/local/lib/revert-database
 always:
 - name: always restart the database
 service:
 name: mariadb
 state: restarted

The when condition on a block also applies to its rescue and always sections if present.

Chapter 5. Implementing Task Control

182 DO407-A2.3-en-2-20170725

References
Error Handling in Playbooks — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_error_handling.html

Error Handling — Blocks — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_blocks.html#error-handling

http://docs.ansible.com/ansible/playbooks_error_handling.html
http://docs.ansible.com/ansible/playbooks_blocks.html#error-handling

Guided Exercise: Handling Errors

DO407-A2.3-en-2-20170725 183

Guided Exercise: Handling Errors

In this exercise, you will handle errors in Ansible playbooks using various features

Outcomes

You should be able to:

• Ignore failed commands during the execution of playbooks.

• Force execution of handlers.

• Override what constitutes a failure in tasks.

• Override the changed state for tasks.

• Implement blocks/rescue/always in playbooks.

Before you begin

From workstation, run the lab setup script to confirm the environment is ready for the lab to
begin. The script creates the working directory, dev-failures.

[student@workstation ~]$ lab task-control-failures setup

Steps

1. From workstation.lab.example.com, change to the dev-failures project directory.

[student@workstation ~]$ cd ~/dev-failures
[student@workstation dev-failures]$

2. The lab script created an Ansible configuration file as well as an inventory file that contains
the server, servera.lab.example.com, in the group, databases. Review the file before
proceeding.

3. Create the playbook.yml playbook, which contains a play with two tasks. The first task is
written with a deliberate error that will cause it to fail.

3.1. Open the playbook in a text editor. Define three variables: web_package with a value
of http, db_package with a value of mariadb-server and db_service with a value
of mariadb. The variables will be used to install the required packages and start the
server.

The http value is an intentional error in the package name. The file should read as
follows:

- hosts: databases
 vars:
 web_package: http
 db_package: mariadb-server
 db_service: mariadb

Chapter 5. Implementing Task Control

184 DO407-A2.3-en-2-20170725

3.2. Define two tasks that use the yum module and the two variables, web_package and
db_package. The tasks will install the required packages. The tasks should read as
follows:

 tasks:
 - name: Install {{ web_package }} package
 yum:
 name: "{{ web_package }}"
 state: latest

 - name: Install {{ db_package }} package
 yum:
 name: "{{ db_package }}"
 state: latest

4. Run the playbook and watch the output of the play.

[student@workstation dev-failures]$ ansible-playbook playbook.yml

PLAY [databases] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Install http package] **
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failed":
 true, "msg": "No package matching 'http' found available, installed or updated",
 "rc": 126, "results": ["No package matching 'http' found available, installed or
 updated"]}
 to retry, use: --limit @/home/student/dev-failures/playbook.retry

PLAY RECAP ***
servera.lab.example.com : ok=1 changed=0 unreachable=0 failed=1

The task failed because there is no existing package called http. Because the first task
failed, the second task was not run.

5. Update the first task to ignore any errors by adding the ignore_errors keyword. The tasks
should read as follows:

 tasks:
 - name: Install {{ web_package }} package
 yum:
 name: "{{ web_package }}"
 state: latest
 ignore_errors: yes

 - name: Install {{ db_package }} package
 yum:
 name: "{{ db_package }}"
 state: latest

6. Run the playbook another time and watch the output of the play.

[student@workstation dev-failures]$ ansible-playbook playbook.yml

DO407-A2.3-en-2-20170725 185

PLAY [databases] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Install http package] **
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failed": true,
 "msg": "No Package matching 'http' found available, installed or updated",
 "rc": 0, "results": []}
...ignoring

TASK [Install mariadb-server package] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=1 unreachable=0 failed=0

Despite the fact that the first task failed, Ansible executed the second one.

7. In this step, we'll set up a block directive so you can experiment with how they work.

7.1. Update the playbook by nesting the first task in a block clause. Remove the line that
sets ignore_errors: yes. The block should read as follows:

 - block:
 - name: Install {{ web_package }} package
 yum:
 name: "{{ web_package }}"
 state: latest

7.2. Nest the task that installs the mariadb-server package in a rescue clause. The task will
be executed if the the task listed in block fails. The block should read as follows:

 rescue:
 - name: Install {{ db_package }} package
 yum:
 name: "{{ db_package }}"
 state: latest

7.3. Finally, add an always clause that will start the database server upon installation using
the service module. The clause should read as follows:

 always:
 - name: Start {{ db_service }} service
 service:
 name: "{{ db_service }}"
 state: started

7.4. Once updated, the task section should read as follows:

 tasks:
 - block:
 - name: Install {{ web_package }} package
 yum:
 name: "{{ web_package }}"
 state: latest
 rescue:

Chapter 5. Implementing Task Control

186 DO407-A2.3-en-2-20170725

 - name: Install {{ db_package }} package
 yum:
 name: "{{ db_package }}"
 state: latest
 always:
 - name: Start {{ db_service }} service
 service:
 name: "{{ db_service }}"
 state: started

8. Now we'll run the playbook again to see what happens.

8.1. Run the playbook. The task in the block that makes sure the web_package is installed
will fail, which will cause the task in the rescue block to run. Then the task in the
always block will run.

[student@workstation dev-failures]$ ansible-playbook playbook.yml

PLAY [databases] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Install http package] **
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failed": true,
 "msg": "No package matching 'http' found available, installed or updated",
 "rc": 126, "results": ["No package matching 'http' found available, installed
 or updated"]}

TASK [Install mariadb-server package] **
ok: [servera.lab.example.com]

TASK [Start mariadb service] ***
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=1 unreachable=0 failed=1

8.2. Edit the playbook, correcting the value of the web_package variable to read httpd.
That will cause the task in the block to succeed the next time we run the playbook.

 vars:
 web_package: httpd
 db_package: mariadb-server
 db_service: mariadb

8.3. Run the playbook again. This time, the task in the block will not fail. This will cause the
task in the rescue to be ignored. The task in the always will still run.

[student@workstation dev-failures]$ ansible-playbook playbook.yml

PLAY [databases] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Install httpd package] ***
changed: [servera.lab.example.com]

DO407-A2.3-en-2-20170725 187

TASK [Start mariadb service] ***
ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=1 unreachable=0 failed=0

9. This step will explore how to control the condition that will cause a task to report it
"changed" the managed host.

9.1. Edit the playbook to add two tasks to the start of the play, preceding the block. The
first task will use the command module to run the date command and register the
result in the command_result variable. The second task will use the debug module to
print the standard output of the first task's command.

 tasks:
 - name: Check local time
 command: date
 register: command_result

 - name: Print local time
 debug:
 var: command_result["stdout"]

9.2. Run the playbook. You should see that the first task which runs the command module
reports "changed", even though it didn't change the remote system, it only collected
information about the time. That is because the command module isn't "smart" enough
to tell the difference between a command that collects data and a command that
changes state.

[student@workstation dev-failures]$ ansible-playbook playbook.yml

PLAY [databases] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Check local time] **
changed: [servera.lab.example.com]

TASK [Print local time] **
ok: [servera.lab.example.com] => {
 "command_result[\"stdout\"]": "Thu Jul 20 03:40:34 UTC 2017"
}

TASK [Install httpd package] ***
ok: [servera.lab.example.com]

TASK [Start mariadb service] ***
ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=5 changed=1 unreachable=0 failed=0

If you run the playbook again, the "Check local time" task will report "changed" every
time.

Chapter 5. Implementing Task Control

188 DO407-A2.3-en-2-20170725

9.3. That command task shouldn't report "changed" every time it runs because it's not
changing the managed host. Since you know that the task will never change a managed
host, add the line changed_when: false to the task to suppress the change.

 tasks:
 - name: Check local time
 command: date
 register: command_result
 changed_when: false

 - name: Print local time
 debug:
 var: command_result["stdout"]

9.4. Run the playbook one more time to see that the task now reports "ok", but the task is
still being run and is still saving the time in the variable.

[student@workstation dev-failures]$ ansible-playbook playbook.yml

PLAY [databases] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Check local time] **
ok: [servera.lab.example.com]

TASK [Print local time] **
ok: [servera.lab.example.com] => {
 "command_result[\"stdout\"]": "Thu Jul 20 03:42:12 UTC 2017"
}

TASK [Install httpd package] ***
ok: [servera.lab.example.com]

TASK [Start mariadb service] ***
ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=5 changed=0 unreachable=0 failed=0

10. As a final exercise, edit the playbook to explore how the failed_when directive interacts
with tasks.

10.1. Edit the "Install {{ web_package }} package" task so that it reports as having failed when
web_package has the value httpd. Since this is the case, the task will report failure
when we run the play.

Be careful with your indentation to make sure the directive is correctly set on the task.

 - block:
 - name: Install {{ web_package }} package
 yum:
 name: "{{ web_package }}"
 state: latest
 failed_when: web_package == "httpd"

DO407-A2.3-en-2-20170725 189

10.2.Run the playbook.

[student@workstation dev-failures]$ ansible-playbook playbook.yml

PLAY [databases] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Check local time] **
ok: [servera.lab.example.com]

TASK [Print local time] **
ok: [servera.lab.example.com] => {
 "command_result[\"stdout\"]": "Thu Jul 20 03:53:01 UTC 2017"
}

TASK [Install httpd package] ***
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failed": true,
 "failed_when_result": true, "msg": "", "rc": 0, "results": ["All packages
 providing httpd are up to date", ""]}

TASK [Install mariadb-server package] **
ok: [servera.lab.example.com]

TASK [Start mariadb service] ***
ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=5 changed=0 unreachable=0 failed=1

Look carefully at the output. The "Install httpd package" task reports that it failed, but
it actually ran and made sure the package is installed first! The failed_when directive
changes the status the task reports after the task runs, it does not change the behavior
of the task itself.

However, the failure reported might change the behavior of the rest of the play.
Since that task was in a block and reported that it failed, the "Install mariadb-server
package" task in the block's rescue section was run.

Cleanup

Run the lab task-control-failures cleanup command to cleanup after the lab.

[student@workstation ~]$ lab task-control-failures cleanup

Chapter 5. Implementing Task Control

190 DO407-A2.3-en-2-20170725

Lab: Implementing Task Control

In this lab, you will install the Apache web server and secure it using mod_ssl. You will use
various Ansible conditionals to deploy the environment.

Outcomes

You should be able to:

• Define conditionals in Ansible playbooks.

• Set up loops that iterate over elements.

• Define handlers in playbooks.

• Define tags and use them in conditionals.

• Handle errors in playbooks.

Before you begin

Log in as the student user on workstation and run lab task-control setup. This setup
script ensures that the managed host, serverb, is reachable on the network. It also ensures that
the correct Ansible configuration file and inventory are installed on the control node.

[student@workstation ~]$ lab task-control setup

Steps

1. From workstation.lab.example.com, change to the lab-task-control project
directory.

2. Defining tasks for the web server

In the top-level directory for this lab, create the install_packages.yml task file. Define a
task that installs the latest version of the httpd and mod_ssl packages. For the two packages
to install, use the variables called web_package and ssl_package. The variables will be
defined later on in the main playbook. Use a loop for installing the packages; moreover, the
packages should only be installed if the server belongs to the webservers group, and only
if the available memory on the system is greater than the amount of memory the memory
variable defines. The variable will be set upon import of the task; use an Ansible fact to
determine the available memory on the managed host.

Add a task that starts the service defined by the web_service variable. That variable will
be set in the main playbook.

3. Defining tasks for the web server's configuration

Create the configure_web.yml task file. Add a task that checks whether or not the httpd
package is installed and register the output in a variable. Update the condition to consider
the task as failed based on the return code of the command (the return code is 1 when a
package is not installed).

Create a block that executes only if the httpd package is installed (use the return code that
has been captured in the first task). The block should start with a task that retrieves the file

DO407-A2.3-en-2-20170725 191

that the https_uri variable defines (the variable will be set in the main playbook) and copy
it to serverb.lab.example.com in the /etc/httpd/conf.d/ directory.

Define a task that creates the ssl directory under /etc/httpd/conf.d/ on the managed
host with a mode of 0755. The directory will store the SSL certificates.

Define a task that creates the logs directory under /var/www/html/ on the managed host
with a mode of 0755. The directory will store the SSL logs.

Define a task that uses the stat module to ensure the /etc/httpd/conf.d/ssl.conf
file exists, and capture the output in a variable. Define a task that renames the /etc/
httpd/conf.d/ssl.conf file as /etc/httpd/conf.d/ssl.conf.bak, only if the file
exists (use the captured output from the previous task).

Define another task that retrieves and extracts the SSL certificates file that the ssl_uri
variable defines (the variable will be set in the main playbook). Extract the file under the /
etc/httpd/conf.d/ssl/ directory.

Configure this task to notify the restart_services handler.

Define the task that creates the index.html file under the /var/www/html/ directory.
The file should use Ansible facts and should read as follows:

serverb.lab.example.com (172.25.250.11) has been customized by Ansible

4. Defining tasks for the firewall

Create the configure_firewall.yml task file. Start with a task that installs the package
that the fw_package variable defines (the variable will be set in the main playbook). Create
a task that starts the service specified by the fw_service variable.

Create a task that adds firewall rules for the http and https services using a loop. The
rules should be applied immediately and persistently. Tag all tasks with the production tag.

5. Defining the main playbook

In the top-level project directory for this lab, create the main playbook, playbook.yml.
The playbook should only apply to hosts in the webservers group. Define a block that
imports the following three task files: install_packages.yml, configure_web.yml,
and configure_firewall.yml.

For the task that imports the install_packages.yml playbook, define the following
variables: memory with a value of 256, web_package with a value of httpd, ssl_package
with a value of mod_ssl and web_service with a value of httpd.

For the task that imports the configure_web.yml file, define the following variables:
https_uri with a value of http://materials.example.com/task_control/
https.conf, and ssl_uri with a value of http://materials.example.com/
task_control/ssl.tar.gz.

For the task that imports the configure_firewall.yml playbook, add a condition to
only import the tasks tagged with the production tag. Define the fw_package and
fw_service variables with a value of firewalld.

Chapter 5. Implementing Task Control

192 DO407-A2.3-en-2-20170725

In the rescue clause for the block, define a task to install the httpd service. Notify the
restart_services handler to start the service upon its installation.

Add a debug statement that reads:

Failed to import and run all the tasks; installing the web server manually

Add an always statement that uses the shell module to query the status of the httpd
service using systemctl.

Define the restart_services handle to restart both the httpd and firewalld services
using a loop.

6. Executing the playbook.yml playbook

Run the playbook.yml playbook to set up the environment. Ensure the web server
has been correctly configured by querying the home page of the web server (https://
serverb.example.com) using curl with the -k option to allow insecure connections. The
output should read as follows:

serverb.lab.example.com (172.25.250.11) has been customized by Ansible

Evaluation

Run the lab task-control grade command from workstation to confirm success on this
exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab task-control grade

Cleanup

Run the lab task-control cleanup command to cleanup after the lab.

[student@workstation ~]$ lab task-control cleanup

Solution

DO407-A2.3-en-2-20170725 193

Solution
In this lab, you will install the Apache web server and secure it using mod_ssl. You will use
various Ansible conditionals to deploy the environment.

Outcomes

You should be able to:

• Define conditionals in Ansible playbooks.

• Set up loops that iterate over elements.

• Define handlers in playbooks.

• Define tags and use them in conditionals.

• Handle errors in playbooks.

Before you begin

Log in as the student user on workstation and run lab task-control setup. This setup
script ensures that the managed host, serverb, is reachable on the network. It also ensures that
the correct Ansible configuration file and inventory are installed on the control node.

[student@workstation ~]$ lab task-control setup

Steps

1. From workstation.lab.example.com, change to the lab-task-control project
directory.

[student@workstation ~]$ cd ~/lab-task-control
[student@workstation lab-task-control]$

2. Defining tasks for the web server

In the top-level directory for this lab, create the install_packages.yml task file. Define a
task that installs the latest version of the httpd and mod_ssl packages. For the two packages
to install, use the variables called web_package and ssl_package. The variables will be
defined later on in the main playbook. Use a loop for installing the packages; moreover, the
packages should only be installed if the server belongs to the webservers group, and only
if the available memory on the system is greater than the amount of memory the memory
variable defines. The variable will be set upon import of the task; use an Ansible fact to
determine the available memory on the managed host.

Add a task that starts the service defined by the web_service variable. That variable will
be set in the main playbook.

2.1. The following steps will edit the single install_packages.yml task file.

In the top-level directory for this lab, create the install_packages.yml task
file. Start by defining the task that uses the yum module in order to install the
required packages. For the packages, use a loop and two variables: web_package and
ssl_package. The two variables will be set by the main playbook.

Chapter 5. Implementing Task Control

194 DO407-A2.3-en-2-20170725

- name: Installs the required packages
 yum:
 name: "{{ item }}"
 with_items:
 - "{{ web_package }}"
 - "{{ ssl_package }}"

2.2. Continue editing install_packages.yml. Add a when clause in order to install the
packages only if:

1. The managed host is in the webservers group.

2. The amount of memory on the managed host is greater than the amount
the memory variable defines. For the amount of memory the system has, the
ansible_memory_mb.real.total can be used.

The when clause should read as follows:

 when:
 - inventory_hostname in groups["webservers"]
 - "(ansible_memory_mb.real.total) > (memory)"

2.3. Finally, add the task that starts the service defined by the web_service variable (the
variable will be set in the main playbook).

- name: Starts the service
 service:
 name: "{{ web_service }}"
 state: started

2.4. When completed, the file should read as follows:

- name: Installs the required packages
 yum:
 name: "{{ item }}"
 with_items:
 - "{{ web_package }}"
 - "{{ ssl_package }}"
 when:
 - inventory_hostname in groups["webservers"]
 - "(ansible_memory_mb.real.total) > (memory)"

- name: Starts the service
 service:
 name: "{{ web_service }}"
 state: started

3. Defining tasks for the web server's configuration

Create the configure_web.yml task file. Add a task that checks whether or not the httpd
package is installed and register the output in a variable. Update the condition to consider
the task as failed based on the return code of the command (the return code is 1 when a
package is not installed).

Solution

DO407-A2.3-en-2-20170725 195

Create a block that executes only if the httpd package is installed (use the return code that
has been captured in the first task). The block should start with a task that retrieves the file
that the https_uri variable defines (the variable will be set in the main playbook) and copy
it to serverb.lab.example.com in the /etc/httpd/conf.d/ directory.

Define a task that creates the ssl directory under /etc/httpd/conf.d/ on the managed
host with a mode of 0755. The directory will store the SSL certificates.

Define a task that creates the logs directory under /var/www/html/ on the managed host
with a mode of 0755. The directory will store the SSL logs.

Define a task that uses the stat module to ensure the /etc/httpd/conf.d/ssl.conf
file exists, and capture the output in a variable. Define a task that renames the /etc/
httpd/conf.d/ssl.conf file as /etc/httpd/conf.d/ssl.conf.bak, only if the file
exists (use the captured output from the previous task).

Define another task that retrieves and extracts the SSL certificates file that the ssl_uri
variable defines (the variable will be set in the main playbook). Extract the file under the /
etc/httpd/conf.d/ssl/ directory.

Configure this task to notify the restart_services handler.

Define the task that creates the index.html file under the /var/www/html/ directory.
The file should use Ansible facts and should read as follows:

serverb.lab.example.com (172.25.250.11) has been customized by Ansible

3.1. The following steps will edit the single configure_web.yml file.

In the top-level directory of this lab, create the configure_web.yml tasks file. Start
with a task that uses the shell module to determine whether or not the httpd
package is installed. The failed_when variable will be used to override how Ansible
should consider the task as failed by using the return code.

- shell:
 rpm -q httpd
 register: rpm_check
 failed_when: rpm_check.rc == 1

3.2. Continue editing the configure_web.yml file. Create a block that contains the tasks
for configuring the files. Start the block with a task that uses the get_url module to
retrieve the Apache SSL configuration file. Use the https_uri variable for the url and
/etc/httpd/conf.d/ for the remote path on the managed host.

- block:
 - get_url:
 url: "{{ https_uri }}"
 dest: /etc/httpd/conf.d/

3.3. Create the /etc/httpd/conf.d/ssl remote directory with a mode of 0755.

Chapter 5. Implementing Task Control

196 DO407-A2.3-en-2-20170725

 - file:
 path: /etc/httpd/conf.d/ssl
 state: directory
 mode: 0755

3.4. Create the /var/www/html/logs remote directory with a mode of 0755.

 - file:
 path: /var/www/html/logs
 state: directory
 mode: 0755

3.5. Ensure the /etc/httpd/conf.d/ssl.conf file exists. Capture the output in the
ssl_file variable using the register statement.

 - stat:
 path: /etc/httpd/conf.d/ssl.conf
 register: ssl_file

3.6. Create the task that renames the /etc/httpd/conf.d/ssl.conf file as /etc/
httpd/conf.d/ssl.conf.bak. The task will evaluate the content of the ssl_file
variable before attempting to rename the file.

 - shell:
 mv /etc/httpd/conf.d/ssl.conf /etc/httpd/conf.d/ssl.conf.bak
 when: ssl_file.stat.exists

3.7. Create the task that uses the unarchive module to retrieve the remote SSL
configuration files. Use the ssl_uri variable for the source and /etc/httpd/
conf.d/ssl/ as the destination. Instruct the task to notify the restart_services
handler when the file has been copied.

 - unarchive:
 src: "{{ ssl_uri }}"
 dest: /etc/httpd/conf.d/ssl/
 copy: no
 notify:
 - restart_services

3.8. Add the last task that creates the index.html file under /var/www/html/ on the
managed host. The page should read as follows:

severb.lab.example.com (172.25.250.11) has been customized by Ansible

Use the two following Ansible facts to create the page: ansible_fqdn, and
ansible_default_ipv4.address.

 - copy:
 content: "{{ ansible_fqdn }} ({{ ansible_default_ipv4.address }}) has been
 customized by Ansible\n"

Solution

DO407-A2.3-en-2-20170725 197

 dest: /var/www/html/index.html

3.9. Finally, make sure the block only runs if the httpd package is installed. To do so, add
a when clause that parses the return code contained in the rpm_check registered
variable.

 when:
 rpm_check.rc == 0

3.10.When completed, the file should read as follows:

- shell:
 rpm -q httpd
 register: rpm_check
 failed_when: rpm_check.rc == 1

- block:
 - get_url:
 url: "{{ https_uri }}"
 dest: /etc/httpd/conf.d/

 - file:
 path: /etc/httpd/conf.d/ssl
 state: directory
 mode: 0755

 - file:
 path: /var/www/html/logs
 state: directory
 mode: 0755

 - stat:
 path: /etc/httpd/conf.d/ssl.conf
 register: ssl_file

 - shell:
 mv /etc/httpd/conf.d/ssl.conf /etc/httpd/conf.d/ssl.conf.bak
 when: ssl_file.stat.exists

 - unarchive:
 src: "{{ ssl_uri }}"
 dest: /etc/httpd/conf.d/ssl/
 copy: no
 notify:
 - restart_services

 - copy:
 content: "{{ ansible_fqdn }} ({{ ansible_default_ipv4.address }}) has been
 customized by Ansible\n"
 dest: /var/www/html/index.html

 when:
 rpm_check.rc == 0

4. Defining tasks for the firewall

Chapter 5. Implementing Task Control

198 DO407-A2.3-en-2-20170725

Create the configure_firewall.yml task file. Start with a task that installs the package
that the fw_package variable defines (the variable will be set in the main playbook). Create
a task that starts the service specified by the fw_service variable.

Create a task that adds firewall rules for the http and https services using a loop. The
rules should be applied immediately and persistently. Tag all tasks with the production tag.

4.1. The following steps will edit the single configure_firewall.yml file.

Define the task that uses the yum module to install latest version of the firewall service.
Tag the task with the production tag. The task should read as follows:

- yum:
 name: "{{ fw_package }}"
 state: latest
 tags: production

4.2. Continue editing the configure_firewall.yml file. Add the task that starts the
firewall service using the fw_service variable and tag it as production. The task
should read as follows:

- service:
 name: "{{ fw_service }}"
 state: started
 tags: production

4.3. Write the task that uses the firewalld module to add the http and https service
rules to the firewall. The rules should be applied immediately as well as persistently. Use
a loop for the two rules. Tag the task as production.

- firewalld:
 service: "{{ item }}"
 immediate: true
 permanent: true
 state: enabled
 with_items:
 - http
 - https
 tags: production

4.4. When completed, the file should read as follows:

- yum:
 name: "{{ fw_package }}"
 state: latest
 tags: production

- service:
 name: "{{ fw_service }}"
 state: started
 tags: production

- firewalld:

Solution

DO407-A2.3-en-2-20170725 199

 service: "{{ item }}"
 immediate: true
 permanent: true
 state: enabled
 with_items:
 - http
 - https
 tags: production

5. Defining the main playbook

In the top-level project directory for this lab, create the main playbook, playbook.yml.
The playbook should only apply to hosts in the webservers group. Define a block that
imports the following three task files: install_packages.yml, configure_web.yml,
and configure_firewall.yml.

For the task that imports the install_packages.yml playbook, define the following
variables: memory with a value of 256, web_package with a value of httpd, ssl_package
with a value of mod_ssl and web_service with a value of httpd.

For the task that imports the configure_web.yml file, define the following variables:
https_uri with a value of http://materials.example.com/task_control/
https.conf, and ssl_uri with a value of http://materials.example.com/
task_control/ssl.tar.gz.

For the task that imports the configure_firewall.yml playbook, add a condition to
only import the tasks tagged with the production tag. Define the fw_package and
fw_service variables with a value of firewalld.

In the rescue clause for the block, define a task to install the httpd service. Notify the
restart_services handler to start the service upon its installation.

Add a debug statement that reads:

Failed to import and run all the tasks; installing the web server manually

Add an always statement that uses the shell module to query the status of the httpd
service using systemctl.

Define the restart_services handle to restart both the httpd and firewalld services
using a loop.

5.1. The following steps will edit the single playbook.yml file.

Create the playbook.yml playbook and start by targeting the hosts in the
webservers host group.

- hosts: webservers

5.2. Continue editing the playbook.yml file. Create a block for importing the
three task files, using the include statement. For the first include, use
install_packages.yml as the name of the file to import. Define the four variables
required by the file:

Chapter 5. Implementing Task Control

200 DO407-A2.3-en-2-20170725

1. memory, with a value of 256

2. web_package, with a value of httpd

3. ssl_package, with a value of mod_ssl

4. web_service, with a value of httpd

Add the following to the playbook.yml file:

 tasks:
 - block:
 - include: install_packages.yml
 vars:
 memory: 256
 web_package: httpd
 ssl_package: mod_ssl
 web_service: httpd

5.3. For the second include, use configure_web.yml as the name of the file to import.
Define the two variables required by the file:

• https_uri, with a value of http://materials.example.com/task_control/
https.conf

• ssl_uri, with a value of http://materials.example.com/task_control/
ssl.tar.gz

Add the following to the playbook.yml file:

 - include: configure_web.yml
 vars:
 https_uri: http://materials.example.com/task_control/https.conf
 ssl_uri: http://materials.example.com/task_control/ssl.tar.gz

5.4. For the third include, use configure_firewall.yml as the name of the file to
import. Define the variables required by the file, fw_package and fw_service, both
with a value of firewalld. Import only the tasks that are tagged with production.

 - include: configure_firewall.yml
 vars:
 fw_package: firewalld
 fw_service: firewalld
 tags: production

5.5. Create the rescue clause for the block that installs the latest version of the httpd
package and notifies the restart_services handler upon the package installation.
Add a debug statement that reads:

Failed to import and run all the tasks; installing the web server manually

 rescue:
 - yum:
 name: httpd
 state: latest

Solution

DO407-A2.3-en-2-20170725 201

 notify:
 - restart_services

 - debug:
 msg: "Failed to import and run all the tasks; installing the web
 server manually"

5.6. In the always clause, use the shell module to query the status of the httpd service,
using systemctl. Add the following to the playbook.yml file:

 always:
 - shell:
 cmd: "systemctl status httpd"

5.7. Define the restart_services handler that uses a loop to restart both the
firewalld and httpd services. Add the following to the playbook.yml file:

 handlers:
 - name: restart_services
 service:
 name: "{{ item }}"
 state: restarted
 with_items:
 - httpd
 - firewalld

5.8. When completed, the playbook should read as follows:

- hosts: webservers
 tasks:
 - block:
 - include: install_packages.yml
 vars:
 memory: 256
 web_package: httpd
 ssl_package: mod_ssl
 web_service: httpd
 - include: configure_web.yml
 vars:
 https_uri: http://materials.example.com/task_control/https.conf
 ssl_uri: http://materials.example.com/task_control/ssl.tar.gz
 - include: configure_firewall.yml
 vars:
 fw_package: firewalld
 fw_service: firewalld
 tags: production

 rescue:
 - yum:
 name: httpd
 state: latest
 notify:
 - restart_services

 - debug:
 msg: "Failed to import and run all the tasks; installing the web
 server manually"

Chapter 5. Implementing Task Control

202 DO407-A2.3-en-2-20170725

 always:
 - shell:
 cmd: "systemctl status httpd"

 handlers:
 - name: restart_services
 service:
 name: "{{ item }}"
 state: restarted
 with_items:
 - httpd
 - firewalld

6. Executing the playbook.yml playbook

Run the playbook.yml playbook to set up the environment. Ensure the web server
has been correctly configured by querying the home page of the web server (https://
serverb.example.com) using curl with the -k option to allow insecure connections. The
output should read as follows:

serverb.lab.example.com (172.25.250.11) has been customized by Ansible

6.1. Before running the playbook, verify its syntax is correct by running ansible-
playbook --syntax-check. If it reports any errors, correct them before moving to
the next step. You should see output similar to the following:

[student@workstation lab-task-control]$ ansible-playbook --syntax-check
 playbook.yml

playbook: playbook.yml

6.2. Using the ansible-playbook command, run the playbook.yml playbook. The
playbook should:

• Import and run the tasks that install the web server packages only if there is enough
memory on the managed host.

• Import and run the tasks that configure SSL for the web server.

• Import and run the tasks that create the firewall rule for the web server to be
reachable.

[student@workstation lab-task-control]$ ansible-playbook playbook.yml
PLAY [webservers]***

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]
...
RUNNING HANDLER [restart_services] ***
changed: [serverb.lab.example.com] => (item=httpd)
changed: [serverb.lab.example.com] => (item=firewalld)

PLAY RECAP ***
serverb.lab.example.com : ok=16 changed=14 unreachable=0 failed=0

Solution

DO407-A2.3-en-2-20170725 203

6.3. Use curl to confirm the web page is available. The -k option allows you to bypass any
SSL strict checking.

[student@workstation lab-task-control]$ curl -k https://serverb.lab.example.com
serverb.lab.example.com (172.25.250.11) has been customized by Ansible

Evaluation

Run the lab task-control grade command from workstation to confirm success on this
exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab task-control grade

Cleanup

Run the lab task-control cleanup command to cleanup after the lab.

[student@workstation ~]$ lab task-control cleanup

Chapter 5. Implementing Task Control

204 DO407-A2.3-en-2-20170725

Summary

In this chapter, you learned:

• Loops can be used to iterate over a set of values. They can be a list of items in sequence or
random order, files, an autogenerated sequence of numbers, or other things

• Conditionals can be used to execute tasks or plays only when certain conditions have been met

• Conditions can be tested with various operators, including string comparisons, mathematical
operators, and Boolean values

• Handlers are special tasks that execute at the end of the play if notified by other tasks

• Tags are used to mark certain tasks to be skipped or executed based on what tags a task has

• Tasks can be configured to handle error conditions by ignoring task failure, forcing handlers
to be called even if the task failed, mark a task as failed when it succeeded, or override the
behavior that causes a task to be marked as changed

• Blocks can be used to group tasks as a unit and execute other tasks depending on whether or
not all the tasks in the block succeed

DO407-A2.3-en-2-20170725 205

TRAINING

CHAPTER 6

IMPLEMENTING JINJA2
TEMPLATES

Overview

Goal Implement a Jinja2 template

Objectives • Describe Jinja2 templates

• Implement Jinja2 templates

Sections • Describing Jinja2 Templates (and Quiz)

• Implementing Jinja2 Templates (and Guided Exercise)

Lab • Implementing Jinja2 Templates

Chapter 6. Implementing Jinja2 Templates

206 DO407-A2.3-en-2-20170725

Describing Jinja2 Templates

Objectives
After completing this section, students should be able to:

• Describe Jinja2 templates

• Describe the differences between YAML files and Jinja2 templates

• Describe variables, control structures, and comment use in Jinja2 templates

Introduction to Jinja2
Ansible uses the Jinja2 templating system to modify files before they are distributed to managed
hosts. Generally speaking, it is preferable to avoid modifying configuration files through logic
in templates. However, templates can be useful when systems need to have slightly modified
versions of the same file. Ansible also uses Jinja2 to reference variables in playbooks.

Ansible allows Jinja2 loops and conditionals to be used in templates, but they are not allowed
in playbooks. Ansible playbooks are completely machine-parseable YAML. This is an important
feature, because it means it is possible to have code generate pieces of files, or to have other
third-party tools read Ansible files. Not everyone will need this feature, but it can unlock
interesting possibilities.

Delimiters

Variables or logic expressions are placed between tags, or delimiters. For example, Jinja2
templates use {% EXPR %} for expressions or logic (for example, loops), while {{ EXPR }}
are used for outputting the results of an expression or a variable to the end user. The latter
tag, when rendered, is replaced with a value or values, and are seen by the end user. Use
{# COMMENT #} syntax to enclose comments.

In the following example the first line includes a comment that will not be included in the final
file. The variable references in the second line are replaced with the values of the system facts
being referenced.

{# /etc/hosts line #}
{{ ansible_default_ipv4.address }} {{ ansible_hostname }}

Control Structures
Often the result of a play depends on the value of a variable, fact (something learned about the
remote system), or previous task result. In some cases, the values of variables depend on other
variables. Further, additional groups can be created to managed hosts based on whether the
hosts match other criteria. There are many options to control execution flow in Ansible.

Loops

Jinja2 uses the for statement to provide looping functionality. In the following example, the
user variable is replaced with all the values included in users.

{% for user in users %}
 {{ user }}

Variable Filters

DO407-A2.3-en-2-20170725 207

{% endfor %}

The following for statement runs through all the values in the users variable, replacing myuser
with each value, except when the value is Snoopy.

{# for statement #}
{% for myuser in users if not myuser == "Snoopy"%}
{{loop.index}} - {{ myuser }}
{% endfor %}

The loop.index variable expands to the index number that the loop is currently on. It has a
value of 1 the first time the loop executes, and it increments by 1 through each iteration.

Conditionals

Jinja2 uses the if statement to provide conditional control. In the following example, the result
is displayed if the finished variable is True.

{% if finished %}
 {{ result }}
{% endif %}

Variable Filters
Jinja2 provides filters which change the output format for template expressions (for example,
to JSON). There are filters available for languages such as YAML or JSON. The to_json filter
formats the expression output using JSON, and the to_yaml filter uses YAML as the formatting
syntax.

{{ output | to_json }}
{{ output | to_yaml }}

Additional filters are available, such as the to_nice_json and to_nice_yaml filters, which
format the expression output in either JSON or YAML human readable format.

{{ output | to_nice_json }}
{{ output | to_nice_yaml }}

Both the from_json and from_yaml filters expect a string in either JSON or YAML format and
parse it.

{{ output | from_json }}
{{ output | from_yaml }}

The expressions used with when clauses in Ansible playbooks are Jinja2 expressions. Built-in
Ansible filters that are used to test return values include failed, changed, succeeded, and
skipped. The following task shows how filters can be used inside of conditional expressions.

tasks:
... Output omitted ...
 - debug: msg="the execution was aborted"
 when: returnvalue | failed

Chapter 6. Implementing Jinja2 Templates

208 DO407-A2.3-en-2-20170725

Issues to be Aware of with YAML vs. Jinja2 in Ansible
The use of some Jinja2 expressions inside of a YAML playbook may change the meaning for
those expressions, so they require some adjustments in the syntax used.

1. YAML syntax requires quotes when a value starts with a variable reference ({{ }}). The
quotes prevent the parser from treating the expression as the start of a YAML dictionary.
For example, the following playbook snippet will fail:

- hosts: app_servers
 vars:
 app_path: {{ base_path }}/bin

Instead, use the following syntax:

- hosts: app_servers
 vars:
 app_path: "{{ base_path }}/bin"

2. When there is a need to include nested {{...}} elements, the braces around the inner
ones must be removed. Consider the following playbook snippet:

 - name: display the host value
 debug:
 msg: hostname = {{ params[{{ host_ip }}] }}, IPaddr = {{ host_ip }}

Ansible raises the following error when it tries to run it:

... Output omitted ...
TASK [display the host value] **
fatal: [localhost]: FAILED! => {"failed": true, "msg": "template error
 while templating string: expected token ':', got '}'. String: hostname =
 {{ params[{{ host_ip }}] }}, IPaddr = {{ host_ip }}"}
... Output omitted ...

Use the following syntax instead. It will run without error.

 - name: display the host value
 debug:
 msg: hostname = {{ params[host_ip] }}, IPaddr = {{ host_ip }}

Now the playbook will run without error.

References
Template Designer Documentation — Jinja2 Documentation
http://jinja.pocoo.org/docs/dev/templates/

http://jinja.pocoo.org/docs/dev/templates/

Quiz: Describing Jinja2 Templates

DO407-A2.3-en-2-20170725 209

Quiz: Describing Jinja2 Templates

Choose the correct answers to the following questions:

1. What is the main purpose of Jinja2 templates usage within Ansible?

a. Modify files before they are distributed to managed hosts
b. Provide an enhanced alternative to YAML for playbooks
c. Add conditional and loop use inside of playbooks
d. Support object use in templates

2. Which three features are included in the Jinja2 templates? (Choose three.)

a. Variable filters
b. Objects
c. Loops
d. Conditionals
e. Iterators

3. Which two delimiters are allowed in Jinja2 templates? (Choose two.)

a. {{ ... }} for variables
b. {$... $} for expressions
c. {% ... %} for expressions
d. {@ ... @} for variables
e. {(...)} for functions

4. Which three of the following filters are supported in Jinja2 templates? (Choose three.)

a. to_nice_json
b. from_nice_json
c. to_nice_yaml
d. from_nice_yaml
e. to_yaml

5. Which two lines show valid Jinja2 usage in YAML? (Choose two.)

a. remote_host: "{{ host_name }}"
b. remote_host: {{ "host_name" }}
c. remote_host: params[{{ host_name }}]
d. remote_host: "{{ params[host_name] }}"

Chapter 6. Implementing Jinja2 Templates

210 DO407-A2.3-en-2-20170725

Solution

Choose the correct answers to the following questions:

1. What is the main purpose of Jinja2 templates usage within Ansible?

a. Modify files before they are distributed to managed hosts
b. Provide an enhanced alternative to YAML for playbooks
c. Add conditional and loop use inside of playbooks
d. Support object use in templates

2. Which three features are included in the Jinja2 templates? (Choose three.)

a. Variable filters
b. Objects
c. Loops
d. Conditionals
e. Iterators

3. Which two delimiters are allowed in Jinja2 templates? (Choose two.)

a. {{ ... }} for variables
b. {$... $} for expressions
c. {% ... %} for expressions
d. {@ ... @} for variables
e. {(...)} for functions

4. Which three of the following filters are supported in Jinja2 templates? (Choose three.)

a. to_nice_json
b. from_nice_json
c. to_nice_yaml
d. from_nice_yaml
e. to_yaml

5. Which two lines show valid Jinja2 usage in YAML? (Choose two.)

a. remote_host: "{{ host_name }}"
b. remote_host: {{ "host_name" }}
c. remote_host: params[{{ host_name }}]
d. remote_host: "{{ params[host_name] }}"

Implementing Jinja2 Templates

DO407-A2.3-en-2-20170725 211

Implementing Jinja2 Templates

Objectives
After completing this section, students should be able to:

• Build a template file

• Use the template file in a playbook

Building a Jinja2 template
A Jinja2 template is composed of multiple elements: data, variables and expressions. Those
variables and expressions are replaced with their values when the Jinja2 template is rendered.
The variables used in the template can be specified in the vars section of the playbook. It is
possible to use the managed hosts' facts as variables on a template.

Note
Remember that the facts associated with a managed host can be obtained using the
ansible system_hostname -i inventory_file -m setup command.

The following example shows how to create a template with variables using two
of the facts retrieved by Ansible from managed hosts: ansible_hostname and
ansible_date_time.date. When the associated playbook is executed, those two facts will be
replaced by their values in the managed host being configured.

Note
A file containing a Jinja2 template does not need any specific file extension (for
example, .j2).

Welcome to {{ ansible_hostname }}.
Today's date is: {{ ansible_date_time.date }}.

The following example uses the for statement, and assumes a myhosts variable has been
defined in the inventory file being used. This variable would contain a list of hosts to be managed.
With the following for statement, all hosts in the myhosts group from the inventory would be
listed.

{% for myhost in groups['myhosts'] %}
{{ myhost }}
{% endfor %}

It is recommended practice to include at the beginning of a Jinja2 template the
ansible_managed variable, in order to reflect that the file is managed by Ansible. This will be
reflected into the file created in the managed host, with a string including the date, user ID and
managed host hostname. This variable by default has the following value.

Chapter 6. Implementing Jinja2 Templates

212 DO407-A2.3-en-2-20170725

ansible_managed = Ansible managed: {file} modified on %Y-%m-%d %H:%M:%S by {uid} on
 {host}

To include the ansible_managed variable inside a Jinja2 template, use the following syntax:

{{ ansible_managed }}

Using Jinja2 Templates in Playbooks
Jinja2 templates are a powerful tool to customize configuration files to be deployed on the
managed hosts. When the Jinja2 template for a configuration file has been created, it can be
deployed to the managed hosts using the template module, which supports the transfer of a
local file in the control node to the managed hosts.

To use the template module, use the following syntax. The value associated with the src key
specifies the source Jinja2 template, and the value associated to the dest key specifies the file
to be created on the destination hosts.

tasks:

 - name: template render
 template:
 src: /tmp/j2-template.j2
 dest: /tmp/dest-config-file.txt

Note
The template module allows you to configure, in the destination file, settings such as
the owner, group or mode, or validate it against a command (for example, visudo -c)

As seen in previous chapters, thanks to Jinja2 syntax, it is also possible to use variables, with or
without filters, inside the YAML definition of a playbook, including facts.

References
template - Templates a file out to a remote server — Ansible Documentation
http://docs.ansible.com/ansible/template_module.html

Variables — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_variables.html

http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/playbooks_variables.html

Guided Exercise: Implementing Jinja2 Templates

DO407-A2.3-en-2-20170725 213

Guided Exercise: Implementing Jinja2
Templates

In this exercise, you will create a simple template file that delivers a custom motd file.

Outcomes

You should be able to:

• Build a template file.

• Use the template file in a playbook.

Before you begin

Log in to workstation as student using student as a password.

On workstation, run the lab jinja2-implement setup script. It checks if Ansible is
installed on workstation, and creates the /home/student/jinja2 directory and downloads
the ansible.cfg file into it. It also downloads the motd.yml, motd.j2, and inventory files
into the /home/student/jinja2/files directory.

[student@workstation ~]$ lab jinja2-implement setup

Note
All the files used along this exercise are available on workstation in the /home/
student/jinja2/files directory.

Steps

1. On workstation, go to the /home/student/jinja2 directory.

[student@workstation ~]$ cd ~/jinja2/

2. Create the inventory file in the current directory. This file configures two groups:
webservers and workstations. Include the system servera.lab.example.com in the webservers
group, and the system workstation.lab.example.com in the workstations group.

[webservers]
servera.lab.example.com

[workstations]
workstation.lab.example.com

3. Create a template for the Message of the Day. Include it in the motd.j2 file in the current
directory. Include the following variables in the template:

• ansible_hostname to retrieve the managed host hostname.

• ansible_date_time.date for the managed host date.

Chapter 6. Implementing Jinja2 Templates

214 DO407-A2.3-en-2-20170725

• system_owner for the email of the owner of the system. This variable needs to be
defined with an appropriate value in the vars section of the playbook template.

This is the system {{ ansible_hostname }}.
Today's date is: {{ ansible_date_time.date }}.
Only use this system with permission.
You can ask {{ system_owner }} for access.

4. Create a playbook in a new file in the current directory, named motd.yml. Define the
system_owner variable in the vars section, and include a task for the template module,
which maps the motd.j2 Jinja2 template to the remote file /etc/motd on the managed
hosts. Set the owner and group to root, and the mode to 0644.

- hosts: all
 user: devops
 become: true
 vars:
 system_owner: clyde@example.com
 tasks:
 - template:
 src: motd.j2
 dest: /etc/motd
 owner: root
 group: root
 mode: 0644

5. Before running the playbook, verify its syntax is correct by running ansible-playbook
--syntax-check. If it reports any errors, correct them before moving to the next step. You
should see output similar to the following:

[student@workstation jinja2]$ ansible-playbook --syntax-check motd.yml

playbook: motd.yml

6. Run the playbook included in the motd.yml file.

[student@workstation jinja2]$ ansible-playbook motd.yml
PLAY [all] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]
ok: [workstation.lab.example.com]

TASK [template] **
changed: [servera.lab.example.com]
changed: [workstation.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0
workstation.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

7. Log in to servera.lab.example.com using the devops user, to verify the motd is
displayed when logging in. Log out when you have finished.

DO407-A2.3-en-2-20170725 215

[student@workstation jinja2]$ ssh devops@servera.lab.example.com
This is the system servera.
Today's date is: 2017-07-21.
Only use this system with permission.
You can ask clyde@example.com for access.
[devops@servera ~]# exit
Connection to servera.lab.example.com closed.

Evaluation

From workstation, run the lab jinja2-implement grade script to confirm success on this
exercise.

[student@workstation ~]$ lab jinja2-implement grade

Cleanup

Run the lab jinja2-implement cleanup command to clean up after the lab.

[student@workstation jinja2]$ lab jinja2-implement cleanup

Chapter 6. Implementing Jinja2 Templates

216 DO407-A2.3-en-2-20170725

Lab: Implementing Jinja2 Templates

In this lab, you will create a file using a Jinja2 template in a playbook.

Outcomes

You should be able to:

• Build a template file.

• Use the template file in a playbook.

Before you begin

Log in to workstation as student using student as a password.

On workstation, run the lab jinja2-lab setup script. It checks if Ansible is installed on
workstation, and creates the /home/student/jinja2-lab directory and downloads the
ansible.cfg file into it. It also downloads the motd.yml, motd.j2, and inventory files into
the /home/student/jinja2-lab/files directory.

[student@workstation ~]$ lab jinja2-lab setup

Note
All the files used in this exercise are available on workstation in the /home/
student/jinja2-lab/files directory.

Steps

1. Create an inventory file, named inventory, in the /home/student/jinja2-
lab directory. This inventory file defines the group servers which has the
serverb.lab.example.com managed host associated to it.

2. Identify the facts on serverb.lab.example.com which show the status of the system
memory.

3. Create a template for the Message of the Day, named motd.j2, in the current directory. Use
the facts previously identified.

4. Create a new playbook file in the current directory, named motd.yml. Using the template
module, configure the motd.j2 Jinja2 template file previously created to map to the file
/etc/motd on the managed hosts. This file has the root user as owner and group, and
its permissions are 0644. Configure the playbook so it uses the devops user, and sets the
become parameter to be true.

5. Run the playbook included in the motd.yml file.

6. Check that the playbook included in the motd.yml file has been executed correctly.

Evaluation

From workstation, run the lab jinja2-lab grade script to confirm success on this
exercise.

DO407-A2.3-en-2-20170725 217

[student@workstation ~]$ lab jinja2-lab grade

Cleanup

From workstation, run the lab jinja2-lab cleanup script to clean up after the lab.

[student@workstation ~]$ lab jinja2-lab cleanup

Chapter 6. Implementing Jinja2 Templates

218 DO407-A2.3-en-2-20170725

Solution
In this lab, you will create a file using a Jinja2 template in a playbook.

Outcomes

You should be able to:

• Build a template file.

• Use the template file in a playbook.

Before you begin

Log in to workstation as student using student as a password.

On workstation, run the lab jinja2-lab setup script. It checks if Ansible is installed on
workstation, and creates the /home/student/jinja2-lab directory and downloads the
ansible.cfg file into it. It also downloads the motd.yml, motd.j2, and inventory files into
the /home/student/jinja2-lab/files directory.

[student@workstation ~]$ lab jinja2-lab setup

Note
All the files used in this exercise are available on workstation in the /home/
student/jinja2-lab/files directory.

Steps

1. Create an inventory file, named inventory, in the /home/student/jinja2-
lab directory. This inventory file defines the group servers which has the
serverb.lab.example.com managed host associated to it.

1.1. On workstation, go to the /home/student/jinja2-lab directory.

[student@workstation ~]$ cd ~/jinja2-lab/

1.2. Create the inventory file in the current directory. This file configures one group:
servers. Include the system serverb.lab.example.com in the servers group.

[servers]
serverb.lab.example.com

2. Identify the facts on serverb.lab.example.com which show the status of the system
memory.

2.1. Use the setup module to get a list of all the facts for the serverb.lab.example.com
managed host. Both the ansible_memfree_mb and ansible_memtotal_mb facts
provide information about the free memory and the total memory of the managed host.

[student@workstation jinja2-lab]$ ansible serverb.lab.example.com -m setup
serverb.lab.example.com | SUCCESS => {
 "ansible_facts": {
... Output omitted ...

Solution

DO407-A2.3-en-2-20170725 219

 "ansible_memfree_mb": 157,
... Output omitted ...
 "ansible_memtotal_mb": 488,
... Output omitted ...
 },
 "changed": false
}

3. Create a template for the Message of the Day, named motd.j2, in the current directory. Use
the facts previously identified.

3.1. Create a new file, named motd.j2, in the current directory. Use both the
ansible_memfree_mb and ansible_memtotal_mb fact variables to create a
Message of the Day.

[student@workstation jinja2-lab]$ cat motd.j2
This system's total memory is: {{ ansible_memtotal_mb }} MBs.
The current free memory is: {{ ansible_memfree_mb }} MBs.

4. Create a new playbook file in the current directory, named motd.yml. Using the template
module, configure the motd.j2 Jinja2 template file previously created to map to the file
/etc/motd on the managed hosts. This file has the root user as owner and group, and
its permissions are 0644. Configure the playbook so it uses the devops user, and sets the
become parameter to be true.

4.1. Create a new playbook file in the current directory, named motd.yml. Using the
template module, configure the motd.j2 Jinja2 template file previously as the value for
the src parameter, and /etc/motd as the value for the dest parameter. Configure the
owner and group parameters to be root, and the mode parameter to be 0644. Use the
devops user for the user parameter, and configure the become parameter to be true.

[student@workstation jinja2-lab]$ cat motd.yml

- hosts: all
 user: devops
 become: true
 tasks:
 - template:
 src: motd.j2
 dest: /etc/motd
 owner: root
 group: root
 mode: 0644

5. Run the playbook included in the motd.yml file.

5.1. Before running the playbook, verify its syntax is correct by running ansible-
playbook --syntax-check. If it reports any errors, correct them before moving to
the next step. You should see output similar to the following:

[student@workstation jinja2-lab]$ ansible-playbook --syntax-check motd.yml

playbook: motd.yml

Chapter 6. Implementing Jinja2 Templates

220 DO407-A2.3-en-2-20170725

5.2. Run the playbook included in the motd.yml file.

[student@workstation jinja2-lab]$ ansible-playbook motd.yml
PLAY [all] ***

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [template] **
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

6. Check that the playbook included in the motd.yml file has been executed correctly.

6.1. Log in to serverb.lab.example.com using the devops user, to verify the motd is
displayed when logging in. Log out when you have finished.

[student@workstation jinja2-lab]$ ssh devops@serverb.lab.example.com
This system's total memory is: 488 MBs.
The current free memory is: 162 MBs.
[devops@serverb ~]$ logout

Evaluation

From workstation, run the lab jinja2-lab grade script to confirm success on this
exercise.

[student@workstation ~]$ lab jinja2-lab grade

Cleanup

From workstation, run the lab jinja2-lab cleanup script to clean up after the lab.

[student@workstation ~]$ lab jinja2-lab cleanup

Summary

DO407-A2.3-en-2-20170725 221

Summary

In this chapter, you learned:

• Ansible uses the Jinja2 templating system to render files before they are distributed to
managed hosts.

• YAML allows the use of Jinja2 based variables, with or without filters, inside the definition of a
playbook.

• A Jinja2 template is usually composed of two elements: variables and expressions. Those
variables and expressions are replaced with their values when the Jinja2 template is rendered.

• Filters in Jinja2 are a way of transforming template expressions from one kind of data into
another.

222

DO407-A2.3-en-2-20170725 223

TRAINING

CHAPTER 7

IMPLEMENTING ROLES

Overview

Goal Create and manage roles

Objectives • Describe the structure and behavior of a role

• Create a role

• Deploy roles with Ansible Galaxy

Sections • Describing Role Structure (and Quiz)

• Creating Roles (and Guided Exercise)

• Deploying Roles with Ansible Galaxy (and Guided Exercise)

Lab • Implementing Roles

Chapter 7. Implementing Roles

224 DO407-A2.3-en-2-20170725

Describing Role Structure

Objectives
After completing this section, students should be able to:

• Describe the structure and behavior of a role.

• Define role dependencies.

Structuring Ansible playbooks with roles
Data centers have a variety of different types of hosts. Some serve as web servers, others as
database servers, and others can have software development tools installed and configured on
them. An Ansible playbook, with tasks and handlers to handle all of these cases, would become
large and complex over time. Ansible roles allow administrators to organize their playbooks into
separate, smaller playbooks and files.

Roles provide Ansible with a way to load tasks, handlers, and variables from external files. Static
files and templates can also be associated and referenced by a role. The files that define a role
have specific names and are organized in a rigid directory structure, which will be discussed later.
Roles can be written so they are general purpose and can be reused.

Use of Ansible roles has the following benefits:

• Roles group content, allowing easy sharing of code with others

• Roles can be written that define the essential elements of a system type: web server, database
server, git repository, or other purpose

• Roles make larger projects more manageable

• Roles can be developed in parallel by different administrators

Examining the Ansible role structure
An Ansible role's functionality is defined by its directory structure. The top-level directory
defines the name of the role itself. Some of the subdirectories contain YAML files, named
main.yml. The files and templates subdirectories can contain objects referenced by the
YAML files.

The following tree command displays the directory structure of the user.example role.

[user@host roles]$ tree user.example
user.example/
├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml

Defining variables and defaults

DO407-A2.3-en-2-20170725 225

├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

Ansible role subdirectories

Subdirectory Function

defaults The main.yml file in this directory contains the default values of role
variables that can be overwritten when the role is used.

files This directory contains static files that are referenced by role tasks.

handlers The main.yml file in this directory contains the role's handler definitions.

meta The main.yml file in this directory contains information about the role,
including author, license, platforms, and optional role dependencies.

tasks The main.yml file in this directory contains the role's task definitions.

templates This directory contains Jinja2 templates that are referenced by role tasks.

tests This directory can contain an inventory and test.yml playbook that can
be used to test the role.

vars The main.yml file in this directory defines the role's variable values.

Defining variables and defaults
Role variables are defined by creating a vars/main.yml file with key: value pairs in the
role directory hierarchy. They are referenced in the role YAML file like any other variable:
{{ VAR_NAME }}. These variables have a high priority and can not be overridden by inventory
variables.

Default variables allow default values to be set for variables of included or dependent roles. They
are defined by creating a defaults/main.yml file with key: value pairs in the role directory
hierarchy. Default variables have the lowest priority of any variables available. They can be easily
overridden by any other variable, including inventory variables.

Define a specific variable in either vars/main.yml or defaults/main.yml, but not in both
places. Default variables should be used when it is intended that their values will be overridden.

Using Ansible roles in a playbook
Using roles in a playbook are straightforward. The following example shows how to use Ansible
roles.

- hosts: remote.example.com
 roles:
 - role1
 - role2

For each role specified, the role tasks, role handlers, role variables, and role dependencies will be
included in the playbook, in that order. Any copy, script, template, or include tasks in the
role can reference the relevant files, templates, or tasks without absolute or relative path names.

Chapter 7. Implementing Roles

226 DO407-A2.3-en-2-20170725

Ansible will look for them in the role's files, templates, or tasks respectively, based on their
use.

The following example shows the alternative syntax for using a role in a playbook. role1 is used
in the same way as the previous example. Default variable values are overridden when role2 is
used.

- hosts: remote.example.com
 roles:
 - role: role1
 - role: role2
 var1: val1
 var2: val2

Defining role dependencies
Role dependencies allow a role to include other roles as dependencies in a playbook. For
example, a role that defines a documentation server may depend upon another role that installs
and configures a web server. Dependencies are defined in the meta/main.yml file in the role
directory hierarchy.

The following is a sample meta/main.yml file.

dependencies:
 - { role: apache, port: 8080 }
 - { role: postgres, dbname: serverlist, admin_user: felix }

By default, roles are only added as a dependency to a playbook once. If another role also lists
it as a dependency it will not be run again. This behavior can be overridden by setting the
allow_duplicates variable to yes in the meta/main.yml file.

Controlling order of execution
Normally, the tasks of roles execute before the tasks of the playbooks that use them. Ansible
provides a way of overriding this default behavior: the pre_tasks and post_tasks tasks.
The pre_tasks tasks are performed before any roles are applied. The post_tasks tasks are
performed after all the roles have completed.

- hosts: remote.example.com
 pre_tasks:
 - debug:
 msg: 'hello'
 roles:
 - role1
 - role2
 tasks:
 - debug:
 msg: 'still busy'
 post_tasks:
 - debug:
 msg: 'goodbye'

Controlling order of execution

DO407-A2.3-en-2-20170725 227

References
Playbook Roles and Include Statements — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_roles.html

http://docs.ansible.com/ansible/playbooks_roles.html

Chapter 7. Implementing Roles

228 DO407-A2.3-en-2-20170725

Quiz: Describing Role Structure

Choose the correct answer to the following questions:

1. Roles are:

a. Configuration settings that allow specific users to run Ansible playbooks.
b. Playbooks for a data center.
c. Collection of YAML task files and supporting items arranged in a specific structure for

easy sharing, portability, and reuse.

2. Which of the following can be specified in roles?

a. Handlers
b. Tasks
c. Templates
d. Variables
e. All of the above

3. Which file declares role dependencies?

a. The Ansible playbook that uses the role.
b. The meta/main.yml file inside the role hierarchy.
c. The meta/main.yml file in the project directory.
d. Role dependencies cannot be defined in Ansible.

4. Which file in a role's directory hierarchy should contain the initial values of variables that
might be used as parameters to the role?

a. defaults/main.yml
b. meta/main.yml
c. vars/main.yml
d. The host inventory file.

Solution

DO407-A2.3-en-2-20170725 229

Solution

Choose the correct answer to the following questions:

1. Roles are:

a. Configuration settings that allow specific users to run Ansible playbooks.
b. Playbooks for a data center.
c. Collection of YAML task files and supporting items arranged in a specific structure

for easy sharing, portability, and reuse.

2. Which of the following can be specified in roles?

a. Handlers
b. Tasks
c. Templates
d. Variables
e. All of the above

3. Which file declares role dependencies?

a. The Ansible playbook that uses the role.
b. The meta/main.yml file inside the role hierarchy.
c. The meta/main.yml file in the project directory.
d. Role dependencies cannot be defined in Ansible.

4. Which file in a role's directory hierarchy should contain the initial values of variables that
might be used as parameters to the role?

a. defaults/main.yml
b. meta/main.yml
c. vars/main.yml
d. The host inventory file.

Chapter 7. Implementing Roles

230 DO407-A2.3-en-2-20170725

Creating Roles

Objectives
After completing this section, students should be able to:

• Create an Ansible role.

• Properly reference an Ansible role in a playbook.

Creating roles in Ansible requires no special development tools. Creating and using a role is a
three step process:

1. Create the role directory structure.

2. Define the role content.

3. Use the role in a playbook.

Creating the role directory structure
Ansible looks for roles in a subdirectory called roles in the project directory. Roles can also be
kept in the directories referenced by the roles_path variable in Ansible configuration files. This
variable contains a colon-separated list of directories to search.

Each role has its own directory with specially named subdirectories. The following directory
structure contains the files that define the motd role.

[user@host ~]$ tree roles/
roles/
└── motd
 ├── defaults
 │ └── main.yml
 ├── files
 ├── handlers
 ├── tasks
 │ └── main.yml
 └── templates
 └── motd.j2

The files subdirectory contains fixed-content files and the templates subdirectory contains
templates that can be deployed by the role when it is used. The other subdirectories can
contain main.yml files that define default variable values, handlers, tasks, role metadata,
or variables, depending on the subdirectory they are in. If a subdirectory exists but is empty,
such as handlers in the previous example, it is ignored. If a role does not utilize a feature, the
subdirectory can be omitted altogether, for example the meta and vars subdirectories in the
previous example.

Defining the role content
After the directory structure is created, the content of the Ansible role must be defined. A good
place to start would be the ROLENAME/tasks/main.yml file. This file defines which modules to
call on the managed hosts that this role is applied.

Using the role in a playbook

DO407-A2.3-en-2-20170725 231

The following tasks/main.yml file manages the /etc/motd file on managed hosts. It uses the
template module to copy the template named motd.j2 to the managed host. The template is
retrieved from the templates subdirectory of the role.

[user@host ~]$ cat roles/motd/tasks/main.yml

tasks file for motd

- name: deliver motd file
 template:
 src: templates/motd.j2
 dest: /etc/motd
 owner: root
 group: root
 mode: 0444

The following command displays the contents of the templates/motd.j2 template of the motd
role. It references Ansible facts and a system-owner variable.

[user@host ~]$ cat roles/motd/templates/motd.j2
This is the system {{ ansible_hostname }}.

Today's date is: {{ ansible_date_time.date }}.

Only use this system with permission.
You can ask {{ system_owner }} for access.

The role can define a default value for the system_owner variable. The defaults/main.yml
file in the role's directory structure is where these values are set.

The following defaults/main.yml file sets the system_owner variable to
user@host.example.com. This will be the email address that is written in the /etc/motd file
of managed hosts that this role is applied to.

[user@host ~]$ cat roles/motd/defaults/main.yml

system_owner: user@host.example.com

Using the role in a playbook
To access a role, reference it in the roles: section of a playbook. The following playbook refers
to the motd role. Because no variables are specified, the role will be applied with its default
variable values.

[user@host ~]$ cat use-motd-role.yml

- name: use motd role playbook
 hosts: remote.example.com
 user: devops
 become: true

 roles:
 - motd

When the playbook is executed, tasks performed because of a role can be identified by the role
name prefix. The following sample output illustrates this with the motd: deliver motd file
message.

Chapter 7. Implementing Roles

232 DO407-A2.3-en-2-20170725

[user@host ~]$ ansible-playbook -i inventory use-motd-role.yml

PLAY [use motd role playbook] **

TASK [setup] ***
ok: [remote.example.com]

TASK [motd : deliver motd file] **
changed: [remote.example.com]

PLAY RECAP ***
remote.example.com : ok=2 changed=1 unreachable=0 failed=0

Changing a role's behavior with variables

Variables can be used with roles, like parameters, to override previously defined, default values.
When they are referenced, the variable: value pairs must be specified as well.

The following example shows how to use the motd role with a different value for the
system_owner role variable. The value specified, someone@host.example.com, will replace
the variable reference when the role is applied to a managed host.

[user@host ~]$ cat use-motd-role.yml

- name: use motd role playbook
 hosts: remote.example.com
 user: devops
 become: true

 roles:
 - role: motd
 system_owner: someone@host.example.com

References
Playbook Roles and Include Statements — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_roles.html

http://docs.ansible.com/ansible/playbooks_roles.html

Guided Exercise: Creating Roles

DO407-A2.3-en-2-20170725 233

Guided Exercise: Creating Roles

In this exercise, you will create two roles that use variables and parameters: myvhost and
myfirewall.

The myvhost role will install and configure the Apache service on a host. A template is provided
that will be used for /etc/httpd/conf.d/vhost.conf: vhost.conf.j2.

The myfirewall role installs, enables, and starts the firewalld daemon. It opens the firewall
service port specified by the firewall_service variable.

Outcomes

You should be able to create Ansible roles that use variables, files, templates, tasks, and handlers
to deploy a network service and enable a working firewall.

Before you begin

Reset servera.

From workstation, run the command lab creating-roles setup to prepare the
environment for this exercise. This will create the working directory, dev-roles, and populate it
with an Ansible configuration file and host inventory.

[student@workstation ~]$ lab creating-roles setup

Steps

1. Log in to your workstation host as student. Change to the dev-roles working
directory.

[student@workstation ~]$ cd ~/dev-roles
[student@workstation dev-roles]$

2. Create the directory structure for a role called myvhost. The role will include fixed files,
templates, tasks, and handlers. A dependency will be created later, so it should have a meta
subdirectory.

[student@workstation dev-roles]$ mkdir -p roles/myvhost/{files,handlers}
[student@workstation dev-roles]$ mkdir roles/myvhost/{meta,tasks,templates}

3. Create the main.yml file in the tasks subdirectory of the role. The role should perform
four tasks:

• Install the httpd package.

• Start and enable the httpd service.

• Download the HTML content into the virtual host DocumentRoot directory.

• Install the template configuration file that configures the webserver.

3.1. Use a text editor to create a file called roles/myvhost/tasks/main.yml. Include
code to use the yum module to install the httpd package. The file contents should look
like the following:

Chapter 7. Implementing Roles

234 DO407-A2.3-en-2-20170725

tasks file for myvhost

- name: install httpd
 yum:
 name: httpd
 state: latest

3.2. Add additional code to the tasks/main.yml file to use the service module to start
and enable the httpd service.

- name: start and enable httpd service
 service:
 name: httpd
 state: started
 enabled: true

3.3. Add another stanza to copy the HTML content from the role to the virtual host
DocumentRoot directory. Use the copy module and include a trailing slash after the
source directory name. This will cause the module to copy the contents of the html
directory immediately below the destination directory (similar to rsync usage). The
ansible_hostname variable will expand to the short host name of the managed host.

- name: deliver html content
 copy:
 src: html/
 dest: "/var/www/vhosts/{{ ansible_hostname }}"

3.4. Add another stanza to use the template module to create /etc/httpd/conf.d/
vhost.conf on the managed host. It should call a handler to restart the httpd
daemon when this file is updated.

- name: template vhost file
 template:
 src: vhost.conf.j2
 dest: /etc/httpd/conf.d/vhost.conf
 owner: root
 group: root
 mode: 0644
 notify:
 - restart httpd

3.5. Save your changes and exit the tasks/main.yml file.

4. Create the handler for restarting the httpd service. Use a text editor to create a file called
roles/myvhost/handlers/main.yml. Include code to use the service module. The file
contents should look like the following:

handlers file for myvhost

- name: restart httpd
 service:
 name: httpd

DO407-A2.3-en-2-20170725 235

 state: restarted

5. Create the HTML content that will be served by the webserver.

5.1. The role task that called the copy module referred to an html directory as the src.
Create this directory below the files subdirectory of the role.

[student@workstation dev-roles]$ mkdir -p roles/myvhost/files/html

5.2. Create an index.html file below that directory with the contents: “simple index”. Be
sure to use this string verbatim because the grading script looks for it.

[student@workstation dev-roles]$ echo 'simple index' > roles/myvhost/files/html/
index.html

6. Move the vhost.conf.j2 template from the project directory to the role's templates
subdirectory.

[student@workstation dev-roles]$ mv vhost.conf.j2 roles/myvhost/templates/

7. Test the myvhost role to make sure it works properly.

7.1. Write a playbook that uses the role, called use-vhost-role.yml. It should have the
following content:

- name: use vhost role playbook
 hosts: webservers

 pre_tasks:
 - debug:
 msg: 'Beginning web server configuration.'

 roles:
 - myvhost

 post_tasks:
 - debug:
 msg: 'Web server has been configured.'

7.2. Before running the playbook, verify its syntax is correct by running ansible-
playbook --syntax-check. If it reports any errors, correct them before moving to
the next step. You should see output similar to the following:

[student@workstation dev-roles]$ ansible-playbook --syntax-check use-vhost-
role.yml

playbook: use-vhost-role.yml

7.3. Run the playbook. Review the output to confirm that Ansible performed the actions on
the web server, servera.

Chapter 7. Implementing Roles

236 DO407-A2.3-en-2-20170725

[student@workstation dev-roles]$ ansible-playbook use-vhost-role.yml

PLAY [use vhost role playbook] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [debug] ***
ok: [servera.lab.example.com] => {
 "msg": "Beginning web server configuration."
}

TASK [myvhost : install httpd] ***
changed: [servera.lab.example.com]

TASK [myvhost : start and enable httpd service] ********************************
changed: [servera.lab.example.com]

TASK [myvhost : deliver html content] **
changed: [servera.lab.example.com]

TASK [myvhost : template vhost file] ***
changed: [servera.lab.example.com]

RUNNING HANDLER [myvhost : restart httpd] **************************************
changed: [servera.lab.example.com]

TASK [debug] ***
ok: [servera.lab.example.com] => {
 "msg": "Web server has been configured."
}

PLAY RECAP ***
servera.lab.example.com : ok=8 changed=5 unreachable=0 failed=0

7.4. Run ad hoc commands to confirm that the role worked. The httpd package should be
installed and the httpd service should be running.

[student@workstation dev-roles]$ ansible webservers -a 'yum list installed
 httpd'
servera.lab.example.com | SUCCESS | rc=0 >>
Loaded plugins: langpacks, search-disabled-repos
Installed Packages
httpd.x86_64 2.4.6-45.el7 @rhel_dvd
[student@workstation dev-roles]$ ansible webservers -a 'systemctl is-active
 httpd'
servera.lab.example.com | SUCCESS | rc=0 >>
active
[student@workstation dev-roles]$ ansible webservers -a 'systemctl is-enabled
 httpd'
servera.lab.example.com | SUCCESS | rc=0 >>
enabled

7.5. The Apache configuration should be installed with template variables expanded.

[student@workstation dev-roles]$ ansible webservers -a 'cat /etc/httpd/conf.d/
vhost.conf'
servera.lab.example.com | SUCCESS | rc=0 >>
Ansible managed: /home/student/dev-roles/roles/myvhost/templates/vhost.conf.j2

DO407-A2.3-en-2-20170725 237

 modified on 2016-04-15 10:01:12 by student on workstation.lab.example.com

<VirtualHost *:80>
 ServerAdmin webmaster@servera.lab.example.com
 ServerName servera.lab.example.com
 ErrorLog logs/servera-error.log
 CustomLog logs/servera-common.log common
 DocumentRoot /var/www/vhosts/servera/

 <Directory /var/www/vhosts/servera/>
 Options +Indexes +FollowSymlinks +Includes
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

7.6. The HTML content should be found in a directory called /var/www/vhosts/servera.
The index.html file should contain the string “simple index”.

[student@workstation dev-roles]$ ansible webservers -a 'cat /var/www/vhosts/
servera/index.html'
servera.lab.example.com | SUCCESS | rc=0 >>
simple index

7.7. Use a web browser on servera to check if the web content is available locally. It should
succeed and display content.

[student@workstation dev-roles]$ ansible webservers -a 'curl -s http://
localhost'
servera.lab.example.com | SUCCESS | rc=0 >>
simple index

7.8. Use a web browser on workstation to check if content is available from http://
servera.lab.example.com. If a firewall is running on servera, you will see the
following error message:

[student@workstation dev-roles]$ curl -S http://servera.lab.example.com
curl: (7) Failed connect to servera.lab.example.com:80; No route to host

This is because the firewall port for HTTP is not open. If the web content successfully
displays, it is because a firewall is not running on servera.

8. Create the role directory structure for a role called myfirewall.

[student@workstation dev-roles]$ mkdir -p roles/myfirewall/{defaults,handlers,tasks}

9. Create the main.yml file in the tasks subdirectory of the role. The role should perform
three tasks:

• Install the firewalld package.

• Start and enable the firewalld service.

• Open a firewall service port.

Chapter 7. Implementing Roles

238 DO407-A2.3-en-2-20170725

9.1. Use a text editor to create a file called roles/myfirewall/tasks/main.yml.
Include code to use the yum module to install the firewalld package. The file contents
should look like the following:

tasks file for myfirewall

- name: install firewalld
 yum:
 name: firewalld
 state: latest

9.2. Add additional code to the tasks/main.yml file to use the service module to start
and enable the firewalld service.

- name: start and enable firewalld service
 service:
 name: firewalld
 state: started
 enabled: true

9.3. Add another stanza to use the firewalld module to immediately, and persistently,
open the service port specified by the firewall_service variable. It should look like
the following:

- name: firewall services config
 firewalld:
 state: enabled
 immediate: true
 permanent: true
 service: "{{ firewall_service }}"

9.4. Save your changes and exit the tasks/main.yml file.

10. Create the handler for restarting the firewalld service. Use a text editor to create a file
called roles/myfirewall/handlers/main.yml. Include code to use the service
module. The file contents should look like the following:

handlers file for myfirewall

- name: restart firewalld
 service:
 name: firewalld
 state: restarted

11. Create the file that defines the default value for the firewall_service variable. It should
have a default value of ssh initially. We will override the value to open the port for http
when we use the role in a later step.

Use a text editor to create a file called roles/myfirewall/defaults/main.yml. It
should contain the following content:

DO407-A2.3-en-2-20170725 239

defaults file for myfirewall

firewall_service: ssh

12. Modify the myvhost role to include the myfirewall role as a dependency, then retest the
modified role.

12.1. Use a text editor to create a file, called roles/myvhost/meta/main.yml, that makes
myvhost depend on the myfirewall role. The firewall_service variable should
be set to http so the correct service port is opened. By using the role in this way, the
default value of ssh for firewall_service will be ignored. The explicitly assigned
value of http will be used instead.

The resulting file should look like the following:

dependencies:
 - { role: myfirewall, firewall_service: http }

12.2.Run the playbook again. Confirm the additional myfirewall tasks are successfully
executed.

[student@workstation dev-roles]$ ansible-playbook use-vhost-role.yml

PLAY [use vhost role playbook] ***

... Output omitted ...

TASK [myfirewall : install firewalld] **
ok: [servera.lab.example.com]

TASK [myfirewall : start and enable firewalld daemon] **************************
ok: [servera.lab.example.com]

TASK [myfirewall : firewall services config] ***********************************
changed: [servera.lab.example.com]

... Output omitted ...

PLAY RECAP ***
servera.lab.example.com : ok=10 changed=6 unreachable=0 failed=0

12.3.Confirm the web server content is available to remote clients.

[student@workstation dev-roles]$ curl http://servera.lab.example.com
simple index

Evaluation

From workstation, run the lab creating-roles grade command to confirm success on
this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab creating-roles grade

Chapter 7. Implementing Roles

240 DO407-A2.3-en-2-20170725

Cleanup

Run the lab creating-roles cleanup command to cleanup the managed host.

[student@workstation ~]$ lab creating-roles cleanup

Deploying Roles with Ansible Galaxy

DO407-A2.3-en-2-20170725 241

Deploying Roles with Ansible Galaxy

Objectives
After completing this section, students should be able to:

• Locate Ansible roles in the Ansible Galaxy website.

• Deploy roles with Ansible Galaxy.

Ansible Galaxy
Ansible Galaxy [https://galaxy.ansible.com] is a public library of Ansible roles written by a variety
of Ansible administrators and users. It is an archive that contains thousands of Ansible roles
and it has a searchable database that helps Ansible users identify roles that might help them
accomplish an administrative task. Ansible Galaxy includes links to documentation and videos for
new Ansible users and role developers.

Figure 7.1: Ansible Galaxy home page

Accessing tips for using Ansible Galaxy

The ABOUT tab on the Ansible Galaxy website home page leads to a page that describes how to
use Ansible Galaxy. There is content that describes how to download and use roles from Ansible
Galaxy. Instructions on how to develop roles and upload them to Ansible Galaxy are also on that
page.

There are counters associated with each role that is found on the Ansible Galaxy website. Users
can vote for the usefulness of a role by clicking the star button. The number of stars a role has is
a clue to its popularity among the Ansible community. Users can also watch a role. The number of
watchers for a role give an indication of community interest in a role under development. Finally,

https://galaxy.ansible.com
https://galaxy.ansible.com

Chapter 7. Implementing Roles

242 DO407-A2.3-en-2-20170725

the number of times a role is downloaded from Ansible Galaxy is maintained with the role. This
count is an indication of how many Ansible users actually use the role.

The EXPLORE tab on the Ansible Galaxy website home page shows the most active, the most
starred, and the most watched roles on Ansible Galaxy. This page also displays the list of the top
role authors and contributors on the site.

Browsing Ansible roles and authors

The BROWSE ROLES and BROWSE AUTHORS tabs on the Ansible Galaxy website home page
give users access to information about the roles published on Ansible Galaxy. Users can search
for an Ansible role by its name, or by other role attributes. The authors of roles published in
Ansible Galaxy can be searched by name.

The following figure shows the search results that displayed after a keyword search was
performed. The term “install git” was entered into the Search roles box.

Figure 7.2: Ansible Galaxy search screen

The pulldown menu to the left of the Search roles box allow searches to be performed on
keywords, author IDs, platform, and tags. Possible platform values include EL for Enterprise
Linux, and Fedora. Tags are often assigned to roles to indicate their use in the data center.
Possible tag values include system, development, web, packaging, and others.

The ansible-galaxy command-line tool
The ansible-galaxy command line tool can be used to search for, display information about,
install, list, remove, or initialize roles.

Identifying and installing roles

The ansible-galaxy search subcommand searches Ansible Galaxy for the string specified
as an argument. The --author, --platforms, and --galaxy-tags options can be used
to narrow the search results. The following example displays the names of roles that include
“install” and “git” in their description, and are available for the Enterprise Linux (el) platform.

The ansible-galaxy command-line tool

DO407-A2.3-en-2-20170725 243

[user@host ~]$ ansible-galaxy search 'install git' --platforms el

Found 77 roles matching your search:

 Name Description
 ---- -----------
 zzet.gitlab Undev Gitlab installation
 jasonrsavino.git Install GIT
 samdoran.gitlab Install GitLab CE Omnibus
 kbrebanov.git Installs git
 AsianChris.git git installation
... Output omitted ...

The ansible-galaxy info subcommand displays more detailed information about a role.
The following command displays information about the davidkarban.git role, available from
Ansible Galaxy. Because the information requires more than one screen to display, ansible-
galaxy uses less to display the role's information.

[user@host ~]$ ansible-galaxy info davidkarban.git
[DEPRECATION WARNING]: The comma separated role spec format, use the
yaml/explicit format instead.. This feature will be removed in a future release.
 Deprecation warnings can be disabled by setting deprecation_warnings=False in
ansible.cfg.
less 458 (POSIX regular expressions)
Copyright (C) 1984-2012 Mark Nudelman

less comes with NO WARRANTY, to the extent permitted by law.
For information about the terms of redistribution,
see the file named README in the less distribution.
Homepage: http://www.greenwoodsoftware.com/less

Role: davidkarban.git
 description: Install git
 active: True
 commit:
 commit_message:
 commit_url:
 company: David Karban
 created: 2015-12-08T09:15:48.542Z
 download_count: 1
 forks_count: 0
 github_branch:
 github_repo: ansible-git
 github_user: davidkarban
 id: 6422
 is_valid: True
 issue_tracker_url: https://github.com/davidkarban/ansible-git/issues
 license: license (GPLv2, CC-BY, etc)
 min_ansible_version: 1.2
 modified: 2016-04-20T20:13:35.549Z
 namespace: davidkarban
 open_issues_count: 0
 path: /etc/ansible/roles
:

The ansible-galaxy install subcommand downloads a role from Ansible Galaxy, then
installs it locally on the control node. The default installation location for roles is /etc/
ansible/roles. This location can be overridden by either the value of the role_path
configuration variable, or a -p DIRECTORY option on the command-line.

Chapter 7. Implementing Roles

244 DO407-A2.3-en-2-20170725

[user@host ~]$ ansible-galaxy install davidkarban.git -p roles/
- downloading role 'git', owned by davidkarban
- downloading role from https://github.com/davidkarban/ansible-git/archive/master.tar.gz
- extracting davidkarban.git to roles/davidkarban.git
- davidkarban.git was installed successfully
[user@host ~]$ ls roles/
davidkarban.git

Multiple roles can be installed with a single ansible-galaxy install command when a
requirements file is specified with the -r option and the destination directory with the -p option.
The requirements file is a YAML file that specifies which roles to download and install. A name
value can be used to determine what the role will be called locally.

There are many types of role sources that can be specified in a requirements file. The following
example shows how to specify a download from Ansible Galaxy and another download from
another web server.

[user@host ~]$ cat roles2install.yml
From Galaxy
- src: author.rolename

From a webserver, where the role is packaged in a gzipped tar archive
- src: https://webserver.example.com/files/sample.tgz
 name: ftpserver-role
[user@host ~]$ ansible-galaxy install -r roles2install.yml -p roles-directory

Roles downloaded and installed from Ansible Galaxy can be used in playbooks like any other
role. They are referenced in the roles: section using their full AUTHOR.NAME role name. The
following use-git-role.yml playbook references the davidkarban.git role.

[user@host ~]$ cat use-git-role.yml

- name: use davidkarban.git role playbook
 hosts: remote.example.com
 user: devops
 become: true

 roles:
 - davidkarban.git

Using the playbook causes git to be installed on the remote.example.com server. The full role
name, including the author, is displayed as its tasks are executed by the playbook.

[user@host ~]$ ssh remote.example.com yum list installed git
Loaded plugins: langpacks, search-disabled-repos
Error: No matching Packages to list
[user@host ~]$ ansible-playbook use-git-role.yml

PLAY [use davidkarban.git role playbook] ***************************************

TASK [setup] ***
ok: [remote.example.com]

TASK [davidkarban.git : Load the OS specific variables] ************************
ok: [remote.example.com]

TASK [davidkarban.git : Install the packages in Redhat derivates] **************

The ansible-galaxy command-line tool

DO407-A2.3-en-2-20170725 245

... Output omitted ...

PLAY RECAP ***
remote.example.com : ok=3 changed=1 unreachable=0 failed=0

[user@host ~]$ ssh remote.example.com yum list installed git
Loaded plugins: langpacks, search-disabled-repos
Installed Packages
git.x86_64 1.8.3.1-5.el7 @rhel_dvd

Managing downloaded modules

The ansible-galaxy command can manage local roles. The roles are found in the roles
directory of the current project, or they can be found in one of the directories listed in the
roles_path variable. The ansible-galaxy list subcommand lists the roles that are found
locally.

[user@host ~]$ ansible-galaxy list
- davidkarban.git, master
- student.bash_env, (unknown version)

A role can be removed locally with the ansible-galaxy remove subcommand.

[user@host ~]$ ansible-galaxy remove student.bash_env
- successfully removed student.bash_env
[user@host ~]$ ansible-galaxy list
- davidkarban.git, master

Using ansible-galaxy to create roles

The ansible-galaxy init command creates a directory structure for a new role that will be
developed. The author and name of the role is specified as an argument to the command and
it creates the directory structure in the current directory. ansible-galaxy interacts with the
Ansible Galaxy website API when it performs most operations. The --offline option permits
the init command to be used when Internet access is unavailable.

Important
Depending on the Ansible version you are using, you might encounter a situation
where ansible-galaxy command does not create all the required subdirectories. For
example: files and templates might be missing. If this is the case simply create
those two directories manually using mkdir command.

[user@host roles]$ ansible-galaxy init --offline student.example
- student.example was created successfully
[user@host roles]$ ls student.example/
defaults files handlers meta README.md tasks templates tests vars

Chapter 7. Implementing Roles

246 DO407-A2.3-en-2-20170725

References
Ansible Galaxy — Ansible Documentation
http://docs.ansible.com/ansible/galaxy.html

http://docs.ansible.com/ansible/galaxy.html

Guided Exercise: Deploying Roles with Ansible Galaxy

DO407-A2.3-en-2-20170725 247

Guided Exercise: Deploying Roles with Ansible
Galaxy

In this exercise, you will use Ansible Galaxy to download and install an Ansible role. You will also
use it to initialize the directory for a new role to be developed.

Outcomes

You should be able to use Ansible Galaxy to initialize a new Ansible role and download and install
an existing role.

Before you begin

From workstation, run the command lab ansible-galaxy setup to prepare the environment
for this exercise. This will create the working directory, dev-roles, and populate it with an
Ansible configuration file and host inventory.

[student@workstation ~]$ lab ansible-galaxy setup

Steps

1. Log in to your workstation host as student. Change to the dev-roles working
directory.

[student@workstation ~]$ cd ~/dev-roles
[student@workstation dev-roles]$

2. Launch your favorite text editor and create a requirements file, called install-
roles.yml. It should contain the following content:

install-roles.yml

- src: http://materials.example.com/roles-library/student.bash_env.tgz
 name: student.bash_env

The src value specifies the URL where the existing Ansible role exists. The name value
defines where to save the role locally.

3. Use the ansible-galaxy command to utilize the requirements file you just created to
download and install the student.bash_env role.

3.1. For comparison, display the contents of the roles subdirectory before the role is
installed.

[student@workstation dev-roles]$ ls roles/
myfirewall myvhost

3.2. Use Ansible Galaxy to download and install the role. The -p roles option specifies
the path to the directory where roles are stored locally. The -r install-roles.yml
option specifies the requirements file listing the roles to download and install.

Chapter 7. Implementing Roles

248 DO407-A2.3-en-2-20170725

[student@workstation dev-roles]$ ansible-galaxy install -p roles -r install-
roles.yml
- downloading role from http://materials.example.com/roles-library/
student.bash_env.tgz
- extracting student.bash_env to roles/student.bash_env
- student.bash_env was installed successfully

3.3. Display the roles subdirectory after the role has been installed. Confirm it has a new
subdirectory, called student.bash_env, matching the name value specified in the
YAML file.

[student@workstation dev-roles]$ ls roles/
myfirewall myvhost student.bash_env

4. Create a playbook, called use-bash_env-role.yml, that uses the student.bash_env
role. It should execute on the webservers host group as the devops user. The contents of
the playbook should look like the following:

- name: use student.bash_env role playbook
 hosts: webservers
 user: devops
 become: true

 roles:
 - student.bash_env

5. Run the playbook. The student.bash_env role creates standard template configuration
files in /etc/skel on the managed host. The files it creates include .bashrc,
.bash_profile, and .vimrc.

[student@workstation dev-roles]$ ansible-playbook -i inventory use-bash_env-role.yml

PLAY [use student.bash_env role playbook] **************************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [student.bash_env : put away .bashrc] *************************************
changed: [servera.lab.example.com]

TASK [student.bash_env : put away .bash_profile] *******************************
ok: [servera.lab.example.com]

TASK [student.bash_env : put away .vimrc] **************************************
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=4 changed=2 unreachable=0 failed=0

6. Compare the template files in the student.bash_env role with the files on the managed
host. They will differ when the templates have variables that will be expanded on the
managed host.

DO407-A2.3-en-2-20170725 249

6.1. Use the md5sum command to generate checksums of the templates.

[student@workstation dev-roles]$ md5sum roles/student.bash_env/templates/*
f939eb71a81a9da364410b799e817202 roles/student.bash_env/templates/
_bash_profile.j2
989764ae6830691e7468599db8d194ba roles/student.bash_env/templates/_bashrc.j2
a7320d70317cd23e0c2083489b532cdf roles/student.bash_env/templates/_vimrc.j2

6.2. Display the MD5 checksums of the files on the managed host, servera, for comparison.

[student@workstation dev-roles]$ ssh servera md5sum /etc/skel/
{.bash_profile,.bashrc,.vimrc}
f939eb71a81a9da364410b799e817202 /etc/skel/.bash_profile
7f6d35286702531c9bef441516334404 /etc/skel/.bashrc
a7320d70317cd23e0c2083489b532cdf /etc/skel/.vimrc

The sums are the same for .bash_profile and .vimrc.

6.3. Display the contents of the _bashrc.j2 template. It uses a variable for some of its
content, and that is why it is different from the file on the managed host.

[student@workstation dev-roles]$ cat roles/student.bash_env/templates/_bashrc.j2
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

Uncomment the following line if you don't like systemctl's auto-paging
 feature:
export SYSTEMD_PAGER=

User specific aliases and functions

PS1="{{ default_prompt }}"

6.4. Display the last few lines of the /etc/skel/.bashrc file on servera. You should see
that it has a line that defines a default PS1 prompt that came from the template.

[student@workstation dev-roles]$ ssh servera tail -n5 /etc/skel/.bashrc

User specific aliases and functions

PS1="[student prompt \W]\$ "

7. The ansible-galaxy command can be used to initialize the subdirectories for a new role.
When creating a new role, instead of creating the directory structure by hand, ansible-
galaxy init --offline will do the work for you.

7.1. Use the ansible-galaxy command with the init subcommand to create a new role
called empty.example. The -p roles option specifies the path to the directory where
roles are stored locally.

Chapter 7. Implementing Roles

250 DO407-A2.3-en-2-20170725

[student@workstation dev-roles]$ ansible-galaxy init --offline -p roles
 empty.example
- empty.example was created successfully

7.2. A new subdirectory is created in the roles directory for the new role that is being
defined.

[student@workstation dev-roles]$ ls roles/
empty.example myfirewall myvhost student.bash_env

7.3. List the directory that was created for the new role. It has all of the subdirectories that
could be used in a role definition.

[student@workstation dev-roles]$ ls roles/empty.example/
defaults files handlers meta README.md tasks templates tests vars
[student@workstation dev-roles]$ ls roles/empty.example/*
roles/empty.example/README.md

roles/empty.example/defaults:
main.yml

roles/empty.example/files:

roles/empty.example/handlers:
main.yml

roles/empty.example/meta:
main.yml

roles/empty.example/tasks:
main.yml

roles/empty.example/templates:

roles/empty.example/tests:
inventory test.yml

roles/empty.example/vars:
main.yml

7.4. Display the contents of the tasks/main.yml file of the new role. Notice that it is a
simple YAML stub with a comment with the role's name. All of the YAML files created by
Ansible Galaxy contain similar content.

[student@workstation dev-roles]$ cat roles/empty.example/tasks/main.yml

tasks file for empty.example

Evaluation

From workstation, run the lab ansible-galaxy grade command to confirm success on
this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab ansible-galaxy grade

DO407-A2.3-en-2-20170725 251

Cleanup

Run the lab ansible-galaxy cleanup command to cleanup the managed host.

[student@workstation ~]$ lab ansible-galaxy cleanup

Chapter 7. Implementing Roles

252 DO407-A2.3-en-2-20170725

Lab: Implementing Roles

In this lab, you will create two roles that use variables and parameters: student.myenv and
myapache.

The student.myenv role customizes a system with required packages and a helpful script for
all users. It will customize a user account, specified by the myenv_user variable, with a profile
picture and an extra command alias in their ~/.bashrc file.

The myapache role will install and configure the Apache service on a host. Two templates are
provided which will be used for the /etc/httpd/conf/httpd.conf and the /var/www/
html/index.html files: apache_httpdconf.j2 and apache_indexhtml.j2, respectively.

Outcomes

You should be able to create Ansible roles that use variables, files, templates, tasks, and handlers
to customize user environments and deploy a network service.

Before you begin

Prepare your systems for this exercise by running the lab ansible-roles-lab setup
command on your workstation system. This will create the working directory, called lab-
roles, and populate it with an Ansible configuration file and host inventory.

[student@workstation ~]$ lab ansible-roles-lab setup

Steps

1. Log in to your workstation host as student. Change to the lab-roles working
directory.

[student@workstation ~]$ cd ~/lab-roles
[student@workstation lab-roles]$

2. Create directories to contain the Ansible roles. They should be contained in the
student.myenv and myapache directories, below ~student/lab-roles/roles on
workstation.

3. Install the mkcd.sh.j2 file as a template for the student.myenv role.

4. Make /usr/share/icons/hicolor/48x48/apps/system-logo-icon.png
available as a static profile image for the student.myenv role. It will ultimately be called
profile.png on the managed host in a user's home directory.

5. Define student.myenv role tasks to perform the following steps:

• Install packages defined by the myenv_packages variable.

• Copy the standard profile picture to the user's home directory as ~/profile.png. Use
the myenv_user variable for the user name.

• Add the following line to the user's ~/.bashrc file: alias tree='tree -C'. Use the
myenv_user variable for the user name. Hint: The lineinfile module might be well
suited for this task.

DO407-A2.3-en-2-20170725 253

• Install the mkcd.sh.j2 template as /etc/profile.d/mkcd.sh. It should have
user:group ownership of root:root and have -rw-r--r-- permissions.

The role should fail with an error message when the myenv_user variable is an empty
string.

6. Define the myenv_packages variable for the student.myenv role so it contains the
following packages: git, tree, and vim-enhanced.

7. Assign the empty string as the default value for the myenv_user variable.

8. Create a playbook, called myenv.yml, that runs on all hosts. It should use the
student.myenv role, but do not set the myenv_user variable. Test the student.myenv
role and confirm that it fails.

9. Update the myenv.yml playbook so that it uses the student.myenv role, setting the
myenv_user variable to student. Test the student.myenv role and confirm that it works
properly.

10. Install the Apache-related Jinja2 template files, in the lab-roles project directory, to the
myapache role.

11. Create a handler that will restart the httpd service.

12. Define myapache role tasks to perform the following steps:

• Install the httpd and firewalld packages.

• Copy the apache_httpdconf.j2 template to /etc/httpd/conf/httpd.conf. The
target file should be owned by root with -r--r--r-- permissions. Restart Apache using
the handler created previously.

• Copy the apache_indexhtml.j2 template to /var/www/html/index.html. The
target file should be owned by root with -r--r--r-- permissions.

• Start and enable the httpd and firewalld services.

• Open port 80/tcp on the firewall.

Package installation should always occur when this role is used, but the other tasks should
only occur when the apache_enable variable is set to true. The role should restart the
Apache service when the configuration file is updated.

13. Create the default variable values for the myapache role. The apache_enable variable
should have a default value of false.

14. Create a playbook, called apache.yml, that runs on serverb. It should use the myapache
role, but use the default value of the apache_enable variable. Test the myapache role and
confirm that it installs the packages, but does not deploy the web server.

15. Modify the apache.yml playbook so that it uses the myapache role, setting the
apache_enable variable to true. Test the myapache role and confirm that it works
properly.

Chapter 7. Implementing Roles

254 DO407-A2.3-en-2-20170725

Evaluation

Grade your work by running the lab ansible-roles-lab grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab ansible-roles-lab grade

Cleanup

Run the lab ansible-roles-lab cleanup command to clean up the managed host.

[student@workstation ~]$ lab ansible-roles-lab cleanup

Solution

DO407-A2.3-en-2-20170725 255

Solution
In this lab, you will create two roles that use variables and parameters: student.myenv and
myapache.

The student.myenv role customizes a system with required packages and a helpful script for
all users. It will customize a user account, specified by the myenv_user variable, with a profile
picture and an extra command alias in their ~/.bashrc file.

The myapache role will install and configure the Apache service on a host. Two templates are
provided which will be used for the /etc/httpd/conf/httpd.conf and the /var/www/
html/index.html files: apache_httpdconf.j2 and apache_indexhtml.j2, respectively.

Outcomes

You should be able to create Ansible roles that use variables, files, templates, tasks, and handlers
to customize user environments and deploy a network service.

Before you begin

Prepare your systems for this exercise by running the lab ansible-roles-lab setup
command on your workstation system. This will create the working directory, called lab-
roles, and populate it with an Ansible configuration file and host inventory.

[student@workstation ~]$ lab ansible-roles-lab setup

Steps

1. Log in to your workstation host as student. Change to the lab-roles working
directory.

[student@workstation ~]$ cd ~/lab-roles
[student@workstation lab-roles]$

2. Create directories to contain the Ansible roles. They should be contained in the
student.myenv and myapache directories, below ~student/lab-roles/roles on
workstation.

The ansible-galaxy command can be used to create the subdirectories for the roles.

Important
Depending on the Ansible version you are using, you might encounter a situation
where ansible-galaxy command does not create two required subdirectories:
files and templates. If this is the case, simply create those two directories
manually using mkdir command.

[student@workstation lab-roles]$ ansible-galaxy init --offline -p roles
 student.myenv
- student.myenv was created successfully
[student@workstation lab-roles]$ ansible-galaxy init --offline -p roles myapache
- myapache was created successfully

3. Install the mkcd.sh.j2 file as a template for the student.myenv role.

Chapter 7. Implementing Roles

256 DO407-A2.3-en-2-20170725

The lab setup script copied the file to the lab-roles working directory. Move it to the
roles/student.myenv/templates/ subdirectory.

[student@workstation lab-roles]$ mv mkcd.sh.j2 roles/student.myenv/templates/

4. Make /usr/share/icons/hicolor/48x48/apps/system-logo-icon.png
available as a static profile image for the student.myenv role. It will ultimately be called
profile.png on the managed host in a user's home directory.

Copy the file, renaming it to roles/student.myenv/files/profile.png.

[student@workstation lab-roles]$ cp /usr/share/icons/hicolor/48x48/apps/system-logo-
icon.png roles/student.myenv/files/profile.png

5. Define student.myenv role tasks to perform the following steps:

• Install packages defined by the myenv_packages variable.

• Copy the standard profile picture to the user's home directory as ~/profile.png. Use
the myenv_user variable for the user name.

• Add the following line to the user's ~/.bashrc file: alias tree='tree -C'. Use the
myenv_user variable for the user name. Hint: The lineinfile module might be well
suited for this task.

• Install the mkcd.sh.j2 template as /etc/profile.d/mkcd.sh. It should have
user:group ownership of root:root and have -rw-r--r-- permissions.

The role should fail with an error message when the myenv_user variable is an empty
string.

Modify roles/student.myenv/tasks/main.yml so that it contains the following:

tasks file for student.myenv

- name: check myenv_user default
 fail:
 msg: You must specify the variable `myenv_user` to use this role!
 when: "myenv_user == ''"

- name: install my packages
 yum:
 name: "{{ item }}"
 state: installed
 with_items: "{{ myenv_packages }}"

- name: copy placeholder profile pic
 copy:
 src: profile.png
 dest: "~{{ myenv_user }}/profile.png"

- name: set an alias in `.bashrc`
 lineinfile:
 line: "alias tree='tree -C'"

Solution

DO407-A2.3-en-2-20170725 257

 dest: "~{{ myenv_user }}/.bashrc"

- name: template out mkcd function
 template:
 src: mkcd.sh.j2
 dest: /etc/profile.d/mkcd.sh
 owner: root
 group: root
 mode: 0644

6. Define the myenv_packages variable for the student.myenv role so it contains the
following packages: git, tree, and vim-enhanced.

Create roles/student.myenv/vars/main.yml with the following contents:

vars file for student.myenv

myenv_packages:
 - 'git'
 - 'tree'
 - 'vim-enhanced'

7. Assign the empty string as the default value for the myenv_user variable.

Create roles/student.myenv/defaults/main.yml with the following contents:

defaults file for student.myenv

myenv_user: ''

8. Create a playbook, called myenv.yml, that runs on all hosts. It should use the
student.myenv role, but do not set the myenv_user variable. Test the student.myenv
role and confirm that it fails.

8.1. Use a text editor to create the myenv.yml playbook. It should look like the following:

- name: setup my personal environment
 hosts: all
 roles:
 - student.myenv

8.2. Run the myenv.yml playbook. Check the ansible-playbook output to make sure it
fails.

[student@workstation lab-roles]$ ansible-playbook myenv.yml

PLAY [setup my personal environment] ***

TASK [Gathering Facts] ***
ok: [serverc.lab.example.com]
ok: [serverb.lab.example.com]

TASK [student.myenv : check myenv_user default] ********************************

Chapter 7. Implementing Roles

258 DO407-A2.3-en-2-20170725

fatal: [serverc.lab.example.com]: FAILED! => {"changed": false, "failed":
 true, "msg": "You must specify the variable `myenv_user` to use this
 role!"}
fatal: [serverb.lab.example.com]: FAILED! => {"changed": false,
 "failed": true, "msg": "You must specify the variable `myenv_user`
 to use this role!"}

 to retry, use: --limit @myenv.retry

PLAY RECAP ***
serverb.lab.example.com : ok=1 changed=0 unreachable=0 failed=1
serverc.lab.example.com : ok=1 changed=0 unreachable=0 failed=1

9. Update the myenv.yml playbook so that it uses the student.myenv role, setting the
myenv_user variable to student. Test the student.myenv role and confirm that it works
properly.

9.1. Use a text editor to modify the myenv.yml playbook. It should look like the following:

- name: setup my personal environment
 hosts: all
 roles:
 - role: student.myenv
 myenv_user: student

9.2. Run the myenv.yml playbook. Check the ansible-playbook output to make sure the
tasks ran properly.

[student@workstation lab-roles]$ ansible-playbook myenv.yml

PLAY [setup my personal environment] ***

TASK [Gathering Facts] ***
ok: [serverc.lab.example.com]
ok: [serverb.lab.example.com]

TASK [student.myenv : check myenv_user default] ********************************
skipping: [serverb.lab.example.com]
skipping: [serverc.lab.example.com]

TASK [student.myenv : install my packages] *************************************
changed: [serverb.lab.example.com] => (item=[u'vim-enhanced', u'tree', u'git'])
changed: [serverc.lab.example.com] => (item=[u'vim-enhanced', u'tree', u'git'])

TASK [student.myenv : copy placeholder profile pic] ****************************
changed: [serverb.lab.example.com]
changed: [serverc.lab.example.com]

TASK [student.myenv : set an alias in `.bashrc`] *******************************
changed: [serverc.lab.example.com]
changed: [serverb.lab.example.com]

TASK [student.myenv : template out mkcd function] ******************************
changed: [serverc.lab.example.com]
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=5 changed=4 unreachable=0 failed=0

Solution

DO407-A2.3-en-2-20170725 259

serverc.lab.example.com : ok=5 changed=4 unreachable=0 failed=0

10. Install the Apache-related Jinja2 template files, in the lab-roles project directory, to the
myapache role.

10.1. The lab setup script installed the templates in the lab-roles working directory. Move
them to the roles/myapache/templates/ subdirectory.

[student@workstation lab-roles]$ mv apache_*.j2 roles/myapache/templates

10.2.List the roles/myapache/templates/ subdirectory to confirm the templates are in
place.

[student@workstation lab-roles]$ ls roles/myapache/templates
apache_httpdconf.j2 apache_indexhtml.j2

11. Create a handler that will restart the httpd service.

Modify roles/myapache/handlers/main.yml so that it contains the following:

handlers file for myapache

- name: restart apache
 service:
 name: httpd
 state: restarted

12. Define myapache role tasks to perform the following steps:

• Install the httpd and firewalld packages.

• Copy the apache_httpdconf.j2 template to /etc/httpd/conf/httpd.conf. The
target file should be owned by root with -r--r--r-- permissions. Restart Apache using
the handler created previously.

• Copy the apache_indexhtml.j2 template to /var/www/html/index.html. The
target file should be owned by root with -r--r--r-- permissions.

• Start and enable the httpd and firewalld services.

• Open port 80/tcp on the firewall.

Package installation should always occur when this role is used, but the other tasks should
only occur when the apache_enable variable is set to true. The role should restart the
Apache service when the configuration file is updated.

Modify roles/myapache/tasks/main.yml so that it contains the following:

tasks file for myapache

- name: install apache package
 yum:

Chapter 7. Implementing Roles

260 DO407-A2.3-en-2-20170725

 name: httpd
 state: latest

- name: install firewalld package
 yum:
 name: firewalld
 state: latest

- name: template out apache configuration file
 template:
 src: apache_httpdconf.j2
 dest: /etc/httpd/conf/httpd.conf
 owner: root
 group: root
 mode: 0444
 notify:
 - restart apache
 when: apache_enable

- name: template out apache index.html
 template:
 src: apache_indexhtml.j2
 dest: /var/www/html/index.html
 owner: root
 group: root
 mode: 0444
 when: apache_enable

- name: start and enable apache daemon
 service:
 name: httpd
 state: started
 enabled: true
 when: apache_enable

- name: start and enable firewalld daemon
 service:
 name: firewalld
 state: started
 enabled: true
 when: apache_enable

- name: open http firewall port
 firewalld:
 port: 80/tcp
 immediate: true
 permanent: true
 state: enabled
 when: apache_enable

13. Create the default variable values for the myapache role. The apache_enable variable
should have a default value of false.

Modify roles/myapache/defaults/main.yml so it contains the following:

defaults file for myapache

apache_enable: false

Solution

DO407-A2.3-en-2-20170725 261

14. Create a playbook, called apache.yml, that runs on serverb. It should use the myapache
role, but use the default value of the apache_enable variable. Test the myapache role and
confirm that it installs the packages, but does not deploy the web server.

14.1. Use a text editor to create the apache.yml playbook. It should look like the following:

- name: setup apache on serverb.lab.example.com
 hosts: serverb.lab.example.com
 roles:
 - myapache

14.2.Run the apache.yml playbook. Check the ansible-playbook output to make sure it
installs the needed packages, but skips the remaining tasks.

[student@workstation lab-roles]$ ansible-playbook apache.yml

PLAY [setup apache on serverb.lab.example.com] *********************************

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [myapache : install apache package] ***************************************
changed: [serverb.lab.example.com]

TASK [myapache : install firewalld package] ************************************
changed: [serverb.lab.example.com]

TASK [myapache : template out apache configuration file] ***********************
skipping: [serverb.lab.example.com]

TASK [myapache : template out apache index.html] *******************************
skipping: [serverb.lab.example.com]

TASK [myapache : start and enable apache daemon] *******************************
skipping: [serverb.lab.example.com]

TASK [myapache : open http firewall port] **************************************
skipping: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

15. Modify the apache.yml playbook so that it uses the myapache role, setting the
apache_enable variable to true. Test the myapache role and confirm that it works
properly.

15.1. Use a text editor to modify the apache.yml playbook. It should look like the following:

- name: setup apache on serverb.lab.example.com
 hosts: serverb.lab.example.com
 roles:
 - role: myapache
 apache_enable: true

Chapter 7. Implementing Roles

262 DO407-A2.3-en-2-20170725

15.2.Run the apache.yml playbook. Check the ansible-playbook output to make sure
the tasks ran properly.

[student@workstation lab-roles]$ ansible-playbook apache.yml

PLAY [setup apache on serverb.lab.example.com] *********************************

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [myapache : install apache package] ***************************************
ok: [serverb.lab.example.com]

TASK [myapache : install firewalld package] ************************************
ok: [serverb.lab.example.com]

TASK [myapache : template out apache configuration file] ***********************
changed: [serverb.lab.example.com]

TASK [myapache : template out apache index.html] *******************************
changed: [serverb.lab.example.com]

TASK [myapache : start and enable apache daemon] *******************************
changed: [serverb.lab.example.com]

TASK [myapache : start and enable firewalld daemon] ****************************
changed: [serverb.lab.example.com]

TASK [myapache : open http firewall port] **************************************
changed: [serverb.lab.example.com]

RUNNING HANDLER [myapache : restart apache] ************************************
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=9 changed=6 unreachable=0 failed=0

15.3.Use a web browser to confirm that serverb is serving web content.

[student@workstation lab-roles]$ curl -s http://serverb.lab.example.com
<!-- Ansible managed -->
<h2>Apache is running!</h2>

Evaluation

Grade your work by running the lab ansible-roles-lab grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab ansible-roles-lab grade

Cleanup

Run the lab ansible-roles-lab cleanup command to clean up the managed host.

[student@workstation ~]$ lab ansible-roles-lab cleanup

Summary

DO407-A2.3-en-2-20170725 263

Summary

In this chapter, you learned:

• Roles organize Ansible tasks in a way that allows reuse and sharing.

• Role variables should be defined in defaults/main.yml when they will be used as
parameters, otherwise they should be defined in vars/main.yml.

• Role dependencies can be defined in the dependencies section of the meta/main.yml file
of a role.

• Tasks that are to be applied before and after roles are included with the pre_tasks and
post_tasks tasks in a playbook.

• Ansible roles are referenced in playbooks in the roles section.

• Default role variables can be overwritten when a role is used in a playbook.

• Ansible Galaxy [https://galaxy.ansible.com] is a public library of Ansible roles written by Ansible
users.

• The ansible-galaxy command can search for, display information about, install, list,
remove, or initialize roles.

• The ansible-galaxy init --offline command creates the well-defined directory
structure that Ansible roles have.

https://galaxy.ansible.com
https://galaxy.ansible.com

264

DO407-A2.3-en-2-20170725 265

TRAINING

CHAPTER 8

OPTIMIZING ANSIBLE

Overview

Goal Tune how Ansible executes plays and tasks using host
patterns, delegation, and parallelism

Objectives • Specify managed hosts for plays and ad hoc commands
using host patterns

• Configure delegation in a playbook

• Configure parallelism in Ansible

Sections • Selecting Hosts with Host Patterns (and Guided Exercise)

• Configuring Delegation (and Guided Exercise)

• Configuring Parallelism (and Guided Exercise)

Lab • Optimizing Ansible

Chapter 8. Optimizing Ansible

266 DO407-A2.3-en-2-20170725

Selecting Hosts with Host Patterns

Objectives
After completing this section, students should be able to:

• Explain how host patterns may be used to specify hosts from the inventory for plays or ad hoc
commands.

Referencing Inventory Hosts
Host patterns are used to specify the hosts which should be targeted by a play or ad hoc
command. In its simplest form, the name of a managed host or a host group in the inventory is a
host pattern that specifies that host or host group.

You've already been using host patterns in this course. In a play, the hosts directive specifies
the managed hosts to run the play against. For an ad hoc command, the host pattern is provided
as a command line argument to the ansible command.

Host patterns are important to understand. It is usually easier to control what hosts a play
targets by carefully using host patterns and having appropriate inventory groups, instead of
setting complex conditionals on the play's tasks.

Managed Host

The most basic host pattern is the name for a single managed host listed in the inventory.
This specifies that the host will be the only one in the inventory that will be acted upon by the
ansible command.

The following example inventory will be used throughout this section to illustrate host patterns.
The ansible command's --list-hosts option will be used to illustrate how some of these
host patterns resolve.

The first example will specify a single managed host from the inventory.

[student@controlnode ~]$ cat myinventory
web.example.com
data.example.com

[lab]
labhost1.example.com
labhost2.example.com

[test]
test1.example.com
test2.example.com

[datacenter1]
labhost1.example.com
test1.example.com

[datacenter2]
labhost2.example.com
test2.example.com

[datacenter:children]
datacenter1

Referencing Inventory Hosts

DO407-A2.3-en-2-20170725 267

datacenter2

[new]
192.168.2.1
192.168.2.2

[student@controlnode ~]$ ansible web.example.com -i myinventory --list-hosts
 hosts (1):
 web.example.com

Remember that an IP address can be listed explicitly in the inventory instead of a host name. If it
is, it can be used as a host pattern in the same way. If the IP address is not in the inventory, you
can't use it to specify the host even if the IP address resolves to that host name.

The following example shows how a host pattern can be used to reference an IP address
contained in an inventory.

[student@controlnode ~]$ ansible 192.168.2.1 -i myinventory --list-hosts
 hosts (1):
 192.168.2.1

Note
One problem with referring to managed hosts by IP address in the inventory is that it
can be hard to remember what IP address goes with which host for your plays and ad
hoc commands. But you may find that you have to specify the host by IP address for
connection purposes, because the host can't have a real host name in DNS for some
reason.

It is possible to point an alias at a particular IP address in your inventory by setting the
ansible_host host variable. For example, you could have a host in your inventory
named dummy.example, and then direct connections using that name to the IP
address 192.168.2.1 by creating a host_vars/dummy.example file containing the
following host variable:

ansible_host: 192.168.2.1

Groups

You've also already used inventory host groups as host patterns. When a group name is used as a
host pattern, it specifies that Ansible will act on the hosts that are members of the group.

[student@controlnode ~]$ ansible lab -i myinventory --list-hosts
 hosts (2):
 labhost1.example.com
 labhost2.example.com

Remember that there is a special group all that matches all managed hosts in the inventory.

[student@controlnode ~]$ ansible all -i myinventory --list-hosts
 hosts (8):
 web.example.com
 data.example.com

Chapter 8. Optimizing Ansible

268 DO407-A2.3-en-2-20170725

 labhost1.example.com
 test1.example.com
 labhost2.example.com
 test2.example.com
 192.168.2.1
 192.168.2.2

There is also a special group ungrouped which matches all managed hosts in the inventory that
are not members of any other group:

[student@controlnode ~]$ ansible ungrouped -i myinventory --list-hosts
 hosts (2):
 web.example.com
 data.example.com

Wildcards

Another method of accomplishing the same thing as the all host pattern is to use the asterisk
(*) wildcard character, which matches any string.

[student@controlnode ~]$ ansible '*' -i myinventory --list-hosts
 hosts (8):
 labhost1.example.com
 test1.example.com
 labhost2.example.com
 test2.example.com
 web.example.com
 data.example.com
 192.168.2.1
 192.168.2.2

Important
Some characters usable in host patterns also have meaning for the shell. This can be
a problem when using host patterns to run ad hoc commands from the command line
with ansible. In this case, it is a recommended practice to quote host patterns used
on the command line to protect them from unwanted shell expansion.

Likewise, in an Ansible Playbook, you may need to put your host pattern in single
quotes to ensure it's parsed correctly if you're using any special wildcards or list
characters:

- name: Deploy to datacenter1 but not test1.example.com
 hosts: '!test1.example.com,development'

The asterisk character can also be used like file globbing to match any managed hosts or groups
that contain a particular substring.

For example, the following wildcard host pattern matches all inventory names that end in
.example.com:

[student@controlnode ~]$ ansible '*.example.com' -i myinventory --list-hosts
 hosts (6):
 labhost1.example.com
 test1.example.com

Referencing Inventory Hosts

DO407-A2.3-en-2-20170725 269

 labhost2.example.com
 test2.example.com
 web.example.com
 data.example.com

The following example uses a wildcard host pattern to match names of hosts or host groups
which start with 192.168.2.:

[student@controlnode ~]$ ansible '192.168.2.*' -i myinventory --list-hosts
 hosts (2):
 192.168.2.1
 192.168.2.2

The next example uses a wildcard host pattern to match names of hosts or host groups which
begin with datacenter.

[student@controlnode ~]$ ansible 'datacenter*' -i myinventory --list-hosts
 hosts (4):
 labhost1.example.com
 test1.example.com
 labhost2.example.com
 test2.example.com

Important
The wildcard host patterns match all inventory names, hosts and host groups. They do
not distinguish between names that are DNS names, IP addresses, or groups. This can
lead to some unexpected matches if you forget this.

For example, given the example inventory, compare the results of specifying the
datacenter* host pattern from the preceding example with the results of the data*
host pattern:

[student@controlnode ~]$ ansible 'data*' -i myinventory --list-hosts
 hosts (5):
 labhost1.example.com
 test1.example.com
 labhost2.example.com
 test2.example.com
 data.example.com

Lists

Multiple entries in an inventory can be referenced using logical lists. A comma-separated list of
host patterns matches all hosts that match any of those host patterns.

If you provide a comma-separated list of managed hosts, then all those managed hosts will be
targeted:

[student@controlnode ~]$ ansible labhost1.example.com,test2.example.com,192.168.2.2 \
> -i myinventory --list-hosts
 hosts (3):
 labhost1.example.com
 test2.example.com

Chapter 8. Optimizing Ansible

270 DO407-A2.3-en-2-20170725

 192.168.2.2

If you provide a comma-separated list of groups, then all hosts in any of those groups will be
targeted:

[student@controlnode ~]$ ansible lab,datacenter1 -i myinventory --list-hosts
 hosts (3):
 labhost1.example.com
 labhost2.example.com
 test1.example.com

You can mix managed hosts, host groups, and wildcards as well:

[student@controlnode ~]$ ansible 'lab,data*,192.168.2.2' -i myinventory --list-hosts
 hosts (6):
 labhost1.example.com
 labhost2.example.com
 test1.example.com
 test2.example.com
 data.example.com
 192.168.2.2

Note
The colon character (:) can be used instead of a comma. However, comma is the
preferred syntax, especially when working with IPv6 addresses as managed host
names. You may see the colon syntax in older examples.

If an item in a list starts with an ampersand character (&), then hosts must match that item in
order to match the host pattern. It operates similarly to a logical AND.

For example, based on our example inventory, the following host pattern will match machines in
group lab only if they are also in group datacenter1:

[student@controlnode ~]$ ansible 'lab,&datacenter1' -i myinventory --list-hosts

 hosts (1):
 labhost1.example.com

You could also specify that machines in group datacenter1 match only if they're in group lab
with the host patterns &lab,datacenter1 or datacenter1,&lab.

You can exclude hosts which match a pattern from a list by using the exclamation point or
"bang" character (!) in the front of the host pattern. This operates like a logical NOT.

This example, given our test inventory, matches all hosts defined in the datacenter group with
the exception of test2.example.com:

[student@controlnode ~]$ ansible 'datacenter,!test2.example.com' -i myinventory \
> --list-hosts
 hosts (3):
 labhost1.example.com
 test1.example.com
 labhost2.example.com

Referencing Inventory Hosts

DO407-A2.3-en-2-20170725 271

The pattern '!test2.example.com,datacenter' could have been used in the preceding
example to get the same effect.

Finally, our last example shows the use of a host pattern that matches all hosts in our test
inventory with the exception of the managed hosts in the datacenter1 group.

[student@controlnode ~]$ ansible 'all,!datacenter1' -i myinventory --list-hosts
 hosts (6):
 web.example.com
 data.example.com
 labhost2.example.com
 test2.example.com
 192.168.2.1
 192.168.2.2

References
Patterns — Ansible Documentation
http://docs.ansible.com/ansible/intro_patterns.html

Inventory — Ansible Documentation
http://docs.ansible.com/ansible/intro_inventory.html

http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_inventory.html

Chapter 8. Optimizing Ansible

272 DO407-A2.3-en-2-20170725

Guided Exercise: Selecting Hosts with Host
Patterns

In this exercise, you will explore how host patterns can be used to specify hosts from the
inventory for plays or ad hoc commands. You will be provided with an example inventory to
explore the host patterns.

Outcomes

You should be able to use different host patterns to access various hosts in an inventory.

Before you begin

Log in to workstation as student using student as the password. Run the lab patterns
setup command.

[student@workstation ~]$ lab patterns setup

The setup script confirms that Ansible is installed on workstation and creates a directory
structure for the lab environment.

Steps

1. On workstation, change to the working directory for the exercise, /home/student/
patterns.

[student@workstation ~]$ cd /home/student/patterns
[student@workstation patterns]$

1.1. List the contents of the directory.

[student@workstation patterns]$ ls
ansible.cfg inventory

1.2. Inspect the example inventory file. Notice how the inventory is organized. Explore
which hosts are in the inventory, which domains are used, and which groups are in that
inventory.

[student@workstation patterns]$ cat inventory
srv1.example.com
srv2.example.com
s1.lab.example.com
s2.lab.example.com

[web]
jupiter.lab.example.com
saturn.example.com

[db]
db1.example.com
db2.example.com
db3.example.com

[lb]
lb1.lab.example.com

DO407-A2.3-en-2-20170725 273

lb2.lab.example.com

[boston]
db1.example.com
jupiter.lab.example.com
lb2.lab.example.com

[london]
db2.example.com
db3.example.com
file1.lab.example.com
lb1.lab.example.com

[dev]
web1.lab.example.com
db3.example.com

[stage]
file2.example.com
db2.example.com

[prod]
lb2.lab.example.com
db1.example.com
jupiter.lab.example.com

[function:children]
web
db
lb
city

[city:children]
boston
london
environments

[environments:children]
dev
stage
prod
new

[new]
172.25.252.23
172.25.252.44
172.25.252.32

2. Determine if the db1.example.com server is present in the inventory.

[student@workstation patterns]$ ansible db1.example.com -i inventory --list-hosts
 hosts (1):
 db1.example.com

3. Use an IP address host pattern to reference an IP address contained in the inventory.

[student@workstation patterns]$ ansible 172.25.252.44 -i inventory --list-hosts
 hosts (1):
 172.25.252.44

Chapter 8. Optimizing Ansible

274 DO407-A2.3-en-2-20170725

4. Use the all group to list all managed hosts in the inventory.

[student@workstation patterns]$ ansible all -i inventory --list-hosts
 hosts (17):
 srv1.example.com
 srv2.example.com
 s1.lab.example.com
 s2.lab.example.com
 jupiter.lab.example.com
 saturn.example.com
 db1.example.com
 db2.example.com
 db3.example.com
 lb1.lab.example.com
 lb2.lab.example.com
 file1.lab.example.com
 web1.lab.example.com
 file2.example.com
 172.25.252.23
 172.25.252.44
 172.25.252.32

5. List all servers in the london group.

[student@workstation patterns]$ ansible london -i inventory --list-hosts
 hosts (4):
 db2.example.com
 db3.example.com
 file1.lab.example.com
 lb1.lab.example.com

6. Access information about hosts in the environments nested group.

[student@workstation patterns]$ ansible environments -i inventory --list-hosts
 hosts (10):
 web1.lab.example.com
 db3.example.com
 file2.example.com
 db2.example.com
 lb2.lab.example.com
 db1.example.com
 jupiter.lab.example.com
 172.25.252.23
 172.25.252.44
 172.25.252.32

7. List all hosts that do not belong to any group.

[student@workstation patterns]$ ansible ungrouped -i inventory --list-hosts
 hosts (4):
 srv1.example.com
 srv2.example.com
 s1.lab.example.com
 s2.lab.example.com

8. Using the asterisk (*) character, list all hosts that end in .example.com.

DO407-A2.3-en-2-20170725 275

[student@workstation patterns]$ ansible '*.example.com' -i inventory --list-hosts
 hosts (14):
 jupiter.lab.example.com
 saturn.example.com
 db1.example.com
 db2.example.com
 db3.example.com
 lb1.lab.example.com
 lb2.lab.example.com
 file1.lab.example.com
 web1.lab.example.com
 file2.example.com
 srv1.example.com
 srv2.example.com
 s1.lab.example.com
 s2.lab.example.com

9. As you can see in the output of the previous command, there are 14 hosts in the
*.example.com domain. Modify the search to ignore hosts in the *.lab.example.com
domain.

[student@workstation patterns]$ ansible '*.example.com, !*.lab.example.com' \
> -i inventory --list-hosts
 hosts (7):
 saturn.example.com
 db1.example.com
 db2.example.com
 db3.example.com
 file2.example.com
 srv1.example.com
 srv2.example.com

10. Without accessing the groups, list these three hosts: lb1.lab.example.com,
s1.lab.example.com and db1.example.com.

[student@workstation patterns]$ ansible lb1.lab.example.com,\
> s1.lab.example.com,db1.example.com -i inventory --list-hosts
 hosts (3):
 lb1.lab.example.com
 s1.lab.example.com
 db1.example.com

11. Use a wildcard host pattern to list hosts or host groups that start with a 172.25. IP
address.

[student@workstation patterns]$ ansible '172.25.*' -i inventory --list-hosts
 hosts (3):
 172.25.252.23
 172.25.252.44
 172.25.252.32

12. List all hosts that start with the letter "s."

[student@workstation patterns]$ ansible 's*' -i inventory --list-hosts
 hosts (7):

Chapter 8. Optimizing Ansible

276 DO407-A2.3-en-2-20170725

 saturn.example.com
 srv1.example.com
 srv2.example.com
 s1.lab.example.com
 s2.lab.example.com
 file2.example.com
 db2.example.com

Notice the file2.example.com and db2.example.com hosts in the output of the
previous command. They appear in the list because they are both members of a group called
stage, which also begins with the letter "s."

13. Using a list and wildcard host pattern, list all hosts from the prod group, all hosts whose IP
address begins with 172, and all hosts that contain lab in their name.

[student@workstation patterns]$ ansible 'prod,172*,*lab*' -i inventory --list-hosts
 hosts (11):
 lb2.lab.example.com
 db1.example.com
 jupiter.lab.example.com
 172.25.252.23
 172.25.252.44
 172.25.252.32
 lb1.lab.example.com
 file1.lab.example.com
 web1.lab.example.com
 s1.lab.example.com
 s2.lab.example.com

14. Using a list, access all hosts that belong to both the db and london groups.

[student@workstation patterns]$ ansible 'db,&london' -i inventory --list-hosts
 hosts (2):
 db2.example.com
 db3.example.com

Configuring Delegation

DO407-A2.3-en-2-20170725 277

Configuring Delegation

Objectives
After completing this section, students should be able to:

• Configure delegation in a playbook.

Configuring delegation
In order to complete some configuration tasks, it may be necessary for actions to be taken on a
different server than the one being configured. Some examples of this might include an action
that requires waiting for the server to be restarted, adding a server to a load balancer or a
monitoring server, or making changes to the DHCP or DNS database needed for the server being
configured.

Delegation can help by performing necessary actions for tasks on hosts other than the managed
host being targeted by the play in the inventory. Some scenarios that delegation can handle
include:

• Delegating a task to the local machine

• Delegating a task to a host outside the play

• Delegating a task to a host that exists in the inventory

• Delegating a task to a host that does not exist in the inventory

Delegating tasks to the local machine

When any action needs to be performed on the node running Ansible, it can be delegated to
localhost by using delegate_to: localhost.

Here is a sample playbook which, for each managed host, runs the command ps on the managed
host and then on localhost by using the delegate_to keyword. It displays the output from
both command tasks using the debug module. Both tasks which run the command module set
changed_when: false because they don't change the state of either system when they run.

- name: delegate_to:localhost example
 hosts: dev
 tasks:
 - name: Get information on managed host processes
 command: ps
 register: remote_process
 changed_when: false

 - name: Display information on managed host processes
 debug:
 msg: "{{ remote_process.stdout }}"

 - name: Get information about localhost processes
 command: ps
 delegate_to: localhost
 register: local_process
 changed_when: false

Chapter 8. Optimizing Ansible

278 DO407-A2.3-en-2-20170725

 - name: Display information on localhost processes
 debug:
 msg: "{{ local_process.stdout }}"

The local_action keyword is a shorthand syntax which is sometimes used in place of
delegate_to: localhost on a per-task basis. After the colon, the module name should
appear on the same line followed by its arguments using the obsolete key=value playbook syntax.
Because it uses this older syntax, it can be harder to read or use local_action instead of
delegate_to: localhost.

The previous playbook can be re-written using this shorthand syntax to delegate the task to the
node running Ansible (localhost):

- name: local_action example
 hosts: dev
 tasks:
 - name: Get information on managed host processes
 command: ps
 register: remote_process
 changed_when: false

 - name: Display information on managed host processes
 debug:
 msg: "{{ remote_process.stdout }}"

 - name: Get information about localhost processes
 local_action: command ps
 register: local_process
 changed_when: false

 - name: Display information on localhost processes
 debug:
 msg: "{{ local_process.stdout }}"

Configuring delegation

DO407-A2.3-en-2-20170725 279

Important
Ansible 1.5 introduced the implicit localhost feature, which allows actions using
"hosts: localhost" to succeed on the local machine when localhost is not
defined in the inventory. In essence, with this feature the localhost managed host is
implicitly defined by Ansible when no entry exists for it in the inventory.

The effect of this feature is evident in the resolution of the localhost host pattern
even when no localhost entry is defined in the inventory.

[student@demo ~]$ cat inventory
[student@demo ~]$ ansible localhost --list-hosts
 hosts (1):
 localhost

It is important to note that hosts: all will not match the implicit localhost entry.

It is also important to note that the connection type for the implicit localhost definition
is local_connection. This is different from the default ssh connection type which
would be used if localhost was explicitly defined in the inventory.

One side effect of this difference in connection type is that connections made using
implicit localhost will ignore the remote_user setting since there is no login process
involved. If the remote_user setting is defined to be different than the user that
executes an Ansible command, administrators may experience different outcomes
using implicit versus explicit localhost definitions.

For example. if privilege escalation with sudo is used, implicit localhost would be
escalating privileges from the user account that executed the Ansible command, while
explicit localhost would do so using the remote_user account. If these two accounts
were configured with different sudo privileges, the privilege escalation attempts may
have different outcomes.

Delegating task to a host outside the play

Ansible can be configured to run a task on a host other than the one that is part of the play
with delegate_to. The delegated module will still run once for every machine, but instead
of running on the target machine, it will run on the host specified by delegate_to. The facts
available will be the ones applicable to the original host and not the host the task is delegated to.
The task has the context of the original target host, but it gets executed on the host the task is
delegated to.

The following example shows Ansible code that will delegate a task to an outside machine (in
this case, loadbalancer-host). This example runs a command on the local balancer host to
remove the managed hosts from the load balancer before deploying the latest version of the
web stack. After that task is finished, a script is run to add the managed hosts back into the load
balancer pool.

- hosts: webservers
 tasks:
 - name: Remove server from load balancer
 command: remove-from-lb {{ inventory_hostname }}
 delegate_to: loadbalancer-host

Chapter 8. Optimizing Ansible

280 DO407-A2.3-en-2-20170725

 - name: deploy the latest version of web stack
 git:
 repo: git://foosball.example.org/path/to/repo.git
 dest: /srv/checkout

 - name: Add server to load balancer pool
 command: add-to-lb {{ inventory_hostname }}
 delegate_to: loadbalancer-host

Delegating a task to a host that exists in the inventory

When delegating to a host listed in the inventory, the inventory data will be used when creating
the connection to the delegation target. This would include settings for ansible_connection,
ansible_host, ansible_port, ansible_user and so on. Only the connection-related
variables are used; the rest are read from the managed host originally targeted.

Delegating a task to a host that does not exist in the inventory

When delegating a task to a host that does not exist in the inventory, Ansible will use the same
connection type and details used for the managed host to connect to the delegating host. To
adjust the connection details, use the add_host module to create an ephemeral host in your
inventory with connection data defined.

- name: test play
 hosts: localhost
 tasks:

 - name: add delegation host
 add_host:
 name: demo
 ansible_host: 172.25.250.10
 ansible_user: devops

 - name: echo Hello
 command: echo "Hello from {{ inventory_hostname }}"
 delegate_to: demo
 register: output

 - debug:
 msg: "{{ output.stdout }}"

When the preceding playbook is executed, Ansible will use the connection details for the
ephemeral host demo while executing the task echo Hello on the delegate_to host. The
inventory_hostname will be read from the targeted managed host which in this case is
localhost.

The following example shows the playbook execution. Note that the output contains the
add_host line and the variable expansion to localhost.

[student@demo ~]$ ansible-playbook test.yml -vvv
... Output omitted ...
TASK [add delegation host] ***
task path: /home/student/ansible/dev-optimizing-ansible/inventory/test.yml:6
creating host via 'add_host': hostname=demo
changed: [localhost] => {"add_host": {"groups": [], "host_name": "demo",
"host_vars": {"ansible_host": "172.25.250.10",
"ansible_user": "devops"}}, "changed": true, "invocation":
{"module_args": {"ansible_host": "172.25.250.10",
"ansible_user": "devops", "name": "demo"}, "module_name": "add_host"}}

Delegated Facts

DO407-A2.3-en-2-20170725 281

... Output omitted ...
TASK [echo Hello] **
... Output omitted ...
changed: [localhost -> 172.25.250.10] => {"changed": true, "cmd": ["echo", "Hello from
 localhost"],

Task execution concurrency with delegation

Delegated tasks run for each managed host targeted. But Ansible tasks can run on multiple
managed hosts in parallel. This can create issues with race conditions on the delegated host.
This is particularly likely when using conditionals in the task, or when multiple concurrent
tasks are run in parallel. This can also create a "thundering herd" problem where too many
connections are being opened at once on the delegated host. SSH servers have a MaxStartups
configuration option that can limit the number of concurrent connections allowed.

Delegated Facts
Any facts gathered by a delegated task are assigned by default to the delegate_to host,
instead of the host which actually produced the facts. The following example shows a task file
that will loop through a list of inventory servers to gather facts.

- hosts: app_servers
 tasks:
 - name: gather facts from app servers
 setup:
 delegate_to: "{{item}}"
 with_items: "{{groups['lb_servers']}}"

 - debug:
 var: ansible_eth0['ipv4']['address']

#inventory file
[app_servers]
demo.lab.example.com

[lb_servers]
workstation.lab.example.com

When the previous playbook is run, the output shows the gathered facts of
workstation.lab.example.com as the task delegated to the host from the lb_servers
inventory group instead of demo.lab.example.com.

[student@demo ~]$ ansible-playbook delegatefacts.yml
... Output omitted ...
TASK [gather facts from app servers] **
ok: [demo.lab.example.com -> workstation.lab.example.com] =>
 (item=workstation.lab.example.com)

TASK [debug] ***
ok: [demo.lab.example.com] => {
 "ansible_eth0['ipv4']['address']": "172.25.250.254"
}

PLAY RECAP ***
demo.lab.example.com : ok=3 changed=0 unreachable=0 failed=0

The delegate_facts directive can be set to True to assign the gathered facts from the task to
the delegated host instead of the current host.

Chapter 8. Optimizing Ansible

282 DO407-A2.3-en-2-20170725

- hosts: app_servers
 tasks:
 - name: gather facts from db servers
 setup:
 delegate_to: "{{item}}"
 delegate_facts: True
 with_items: "{{groups['lb_servers']}}"

 - debug:
 var: ansible_eth0['ipv4']['address']

On running the above playbook, the output now shows the facts gathered from
demo.lab.example.com instead of the facts from the current managed host.

[student@demo ~]$ ansible-playbook delegatefacts.yml
... Output omitted ...
TASK [gather facts from db servers] **
ok: [demo.lab.example.com -> workstation.lab.example.com] =>
 (item=workstation.lab.example.com)

TASK [debug] ***
ok: [demo.lab.example.com] => {
 "ansible_eth0['ipv4']['address']": "172.25.250.10"
}

PLAY RECAP ***
demo.lab.example.com : ok=3 changed=0 unreachable=0 failed=0

References
Delegation — Delegation, Rolling Updates, and Local Actions — Ansible
Documentation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegation

Delegated facts — Delegation, Rolling Updates, and Local Actions — Ansible
Documentation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegated-facts

http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegated-facts

Guided Exercise: Configuring Delegation

DO407-A2.3-en-2-20170725 283

Guided Exercise: Configuring Delegation

In this exercise, you will configure the delegation of tasks in an Ansible playbook. The playbook
will configure serverc as a proxy server and servera as an Apache web server. During the
deployment of the website on servera, you will delegate the task of stopping the traffic coming
to servera to serverc proxy server and later after deployment you will start the traffic coming
to servera by delegating task to serverc.

Outcomes

You should be able to:

• Configure the delegation of a task in a playbook.

Before you begin

Log in to workstation as student using student as the password. Run the lab
configure-delegation setup command.

[student@workstation ~]$ lab configure-delegation setup

The setup script confirms that Ansible is installed on workstation and creates a directory
structure for the lab environment.

Steps

1. From workstation, as the student user, change to the ~/configure-delegation
directory.

[student@workstation ~]$ cd ~/configure-delegation
[student@workstation configure-delegation]$

2. Create an inventory file named hosts under ~/configure-delegation/inventory.
The inventory file should have two groups defined: webservers and proxyservers.
The servera.lab.example.com host should be part of the webservers group and
serverc.lab.example.com should be part of the proxyservers group.

[webservers]
servera.lab.example.com

[proxyservers]
serverc.lab.example.com

3. Move the servera.lab.example.com-httpd.conf.j2, template file that configures the
virtual host to the ~/configure-delegation/templates directory. Later you will use an
Ansible variable (inventory_hostname) to list the source of this file.

[student@workstation configure-delegation]$ mv servera.lab.example.com-httpd.conf.j2
 ~/configure-delegation/templates

4. Move the ~/configure-delegation/serverc.lab.example.com-httpd.conf.j2
template file for configuring reverse proxy to the ~/configure-delegation/templates
directory.

Chapter 8. Optimizing Ansible

284 DO407-A2.3-en-2-20170725

[student@workstation configure-delegation]$ mv serverc.lab.example.com-httpd.conf.j2
 ~/configure-delegation/templates

5. Create a template file, named index.html.j2, for the website to be hosted on
servera.lab.example.com under the templates directory. The file should contain the
following content:

The webroot is {{ ansible_fqdn }}.

6. Create a playbook named site.yml in the main project directory, ~/configure-
delegation. The playbook should define a play to install and configure httpd. The play
should contain the following tasks:

• Install the httpd package and start and enable the service to all hosts defined in the
inventory.

• Configure firewall to accept incoming http traffic.

• Copy the respective httpd.conf configuration file to the hosts serving as the web and
proxy server. The resulting file should be named myconfig.conf under the /etc/
httpd/conf.d/myconfig.conf directory.

6.1. Create a site.yml playbook under the lab project directory, ~/configure-
delegation/. Define a play inside the playbook that will execute the tasks on all
hosts. Use devops for remote connection and enable privilege escalation to root using
sudo.

- name: Install and configure httpd
 hosts: all
 remote_user: devops
 become: true

6.2. Continue editing the site.yml playbook. Define a task to install the httpd package and
start and enable the httpd service on all hosts.

 tasks:
 - name: Install httpd
 yum:
 name: httpd
 state: installed
 - name: Start and enable httpd
 service:
 name: httpd
 state: started
 enabled: yes

6.3. In the site.yml playbook, define a task to enable the firewall to allow web traffic on
the managed hosts.

 - name: Install firewalld
 yum:
 name: firewalld

DO407-A2.3-en-2-20170725 285

 state: installed
 - name: Start and enable firewalld
 service:
 name: firewalld
 state: started
 enabled: yes
 - name: Enable firewall
 firewalld:
 zone: public
 service: http
 permanent: true
 state: enabled
 immediate: true

6.4. Define a task in the site.yml playbook to copy the serverc.lab.example.com-
httpd.conf.j2 and servera.lab.example.com-httpd.conf.j2 template files
to the /etc/httpd/conf.d/myconfig.conf directory on their respective hosts.
After copying the configuration file, use the notify: keyword to invoke the restart
httpd handler defined in the next step.

 - name: template server configs
 template:
 src: "templates/{{ inventory_hostname }}-httpd.conf.j2"
 dest: /etc/httpd/conf.d/myconfig.conf
 owner: root
 group: root
 mode: 0644
 notify:
 - restart httpd

6.5. In the site.yml playbook, define a handler to restart the httpd service when it is
invoked.

 handlers:
 - name: restart httpd
 service:
 name: httpd
 state: restarted

6.6. Review the site.yml playbook. The file should contain the following:

- name: Install and configure httpd
 hosts: all
 remote_user: devops
 become: true
 tasks:
 - name: Install httpd
 yum:
 name: httpd
 state: installed
 - name: Start and enable httpd
 service:
 name: httpd
 state: started
 enabled: yes
 - name: Install firewalld
 yum:

Chapter 8. Optimizing Ansible

286 DO407-A2.3-en-2-20170725

 name: firewalld
 state: installed
 - name: Start and enable firewalld
 service:
 name: firewalld
 state: started
 enabled: yes
 - name: Enable firewall
 firewalld:
 zone: public
 service: http
 permanent: true
 state: enabled
 immediate: true
 - name: template server configs
 template:
 src: "templates/{{ inventory_hostname }}-httpd.conf.j2"
 dest: /etc/httpd/conf.d/myconfig.conf
 owner: root
 group: root
 mode: 0644
 notify:
 - restart httpd

 handlers:
 - name: restart httpd
 service:
 name: httpd
 state: restarted

7. Add another play to the site.yml playbook. The play should contain the following tasks:

• Stop the proxy server on serverc.lab.example.com using delegation.

• Deploy the web page by copying the index.html.j2 to the /var/www/html/
index.html directory on servera.lab.example.com.

• Start the proxy server on serverc.lab.example.com using delegation.

7.1. In the site.yml playbook, define another play that will have tasks to deploy a website
that needs to be run on servera.lab.example.com of the webservers inventory
group.

- name: Deploy web service and disable proxy server
 hosts: webservers
 remote_user: devops
 become: true

7.2. In the site.yml playbook, define a task to stop the incoming web traffic
to servera.lab.example.com by stopping the proxy server running on
serverc.lab.example.com.

Since the hosts keyword of the play points to webservers host group, use
delegate_to keyword to delegate this task to serverc.lab.example.com of the
proxyservers host group.

 tasks:
 - name: Stop Apache proxy server
 service:

DO407-A2.3-en-2-20170725 287

 name: httpd
 state: stopped
 delegate_to: "{{ item }}"
 with_items: "{{ groups['proxyservers'] }}"

7.3. In the site.yml playbook, define a task to copy the index.html.j2 template
present under templates directory to /var/www/html/index.html on
servera.lab.example.com, part of the webservers group. Change the owner and
group to apache and file permission to 0644.

 - name: Deploy webpages
 template:
 src: templates/index.html.j2
 dest: /var/www/html/index.html
 owner: apache
 group: apache
 mode: 0644

7.4. Add another task to the site.yml playbook that starts the proxy server by delegating
the task to serverc.lab.example.com.

 - name: Start Apache proxy server
 service:
 name: httpd
 state: started
 delegate_to: "{{ item }}"
 with_items: "{{ groups['proxyservers'] }}"

7.5. Review the site.yml playbook. The file should now contain the following additional
content:

... Previous play content omitted ...

- name: Deploy web service and disable proxy server
 hosts: webservers
 remote_user: devops
 become: true
 tasks:
 - name: Stop Apache proxy server
 service:
 name: httpd
 state: stopped
 delegate_to: "{{ item }}"
 with_items: "{{ groups['proxyservers'] }}"
 - name: Deploy webpages
 template:
 src: templates/index.html.j2
 dest: /var/www/html/index.html
 owner: apache
 group: apache
 mode: 0644
 - name: Start Apache proxy server
 service:
 name: httpd
 state: started
 delegate_to: "{{ item }}"
 with_items: "{{ groups['proxyservers'] }}"

Chapter 8. Optimizing Ansible

288 DO407-A2.3-en-2-20170725

8. Check the syntax of the site.yml playbook. Resolve any syntax errors you find.

[student@workstation configure-delegation]$ ansible-playbook --syntax-check site.yml

playbook: site.yml

9. Execute the site.yml playbook. Watch for the delegation tasks in the command output.

[student@workstation configure-delegation]$ ansible-playbook site.yml

PLAY [Install httpd and configure] ***
... Output omitted ...

PLAY [Deploy web service and disable proxy server] *****************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Stop Apache proxy server] **
changed: [servera.lab.example.com -> serverc.lab.example.com] =>
 (item=serverc.lab.example.com)

TASK [Deploy webpages] ***
changed: [servera.lab.example.com]

TASK [Start Apache proxy server] ***
changed: [servera.lab.example.com -> serverc.lab.example.com] =>
 (item=serverc.lab.example.com)

PLAY RECAP ***
servera.lab.example.com : ok=12 changed=9 unreachable=0 failed=0
serverc.lab.example.com : ok=8 changed=3 unreachable=0 failed=0

10. Verify the website by browsing the http://serverc.lab.example.com/external link.

[student@workstation configure-delegation]$ curl http://serverc.lab.example.com/
external
The webroot is servera.lab.example.com.

Cleanup

Run the lab configure-delegation cleanup command to cleanup after the lab.

[student@workstation ~]$ lab configure-delegation cleanup

Configuring Parallelism

DO407-A2.3-en-2-20170725 289

Configuring Parallelism

Objectives
After completing this section, students should be able to:

• Configure parallelism in Ansible

Configure parallelism in Ansible using forks
Ansible allows much more control over the execution of the playbook by running the tasks
in parallel on all hosts. By default, Ansible only fork up to five times, so it will run a particular
task on five different machines at once. This value is set in the Ansible configuration file
ansible.cfg.

[student@demo ~]$ grep forks /etc/ansible/ansible.cfg
#forks = 5

When there are a large number of managed hosts (more than five), the forks parameter can
be changed to something more suitable for the environment. The default value can be either
overridden in the configuration file by specifying a new value for the forks key, or the value can
be changed using the --forks option for the ansible-playbook or ansible commands.

Running tasks in parallel

For any specific play, you can use the serial keyword in a playbook to temporarily reduce the
number of machines running in parallel from the fork count specified in the Ansible configuration
file. The serial keyword is primarily used to control rolling updates.

Rolling updates

If there is a website being deployed on 100 web servers, only 10 of them should be updated
at the same time. The serial key can be set to 10 in the playbook to reduce the number of
simultaneous deployments (assuming that the fork key was set to something higher). The
serial keyword can also be specified as a percentage which will be applied to the total number
of hosts in the play. If the number of hosts does not divide equally into the number of passes, the
final pass will contain the modulus. Regardless of the percentage, the number of hosts per pass
will always be 1 or greater.

- name: Limit the number of hosts this play runs on at the same time
 hosts: appservers
 serial: 2

Ansible, regardless of the number of forks set, only spins up the tasks based on the current
number of hosts in a play.

Asynchronous tasks
There are some system operations that take a while to complete. For example, when downloading
a large file or rebooting a server, such tasks takes a long time to complete. Using parallelism and
forks, Ansible starts the command quickly on the managed hosts, then polls the hosts for status
until they are all finished.

Chapter 8. Optimizing Ansible

290 DO407-A2.3-en-2-20170725

To run an operation in parallel, use the async and poll keywords. The async keyword triggers
Ansible to run the job in the background and can be checked later, and its value will be the
maximum time that Ansible will wait for the command to complete. The value of poll indicates
to Ansible how often to poll to check if the command has been completed. The default poll
value is 10 seconds.

In the example, the get_url module takes a long time to download a file and async: 3600
instructs Ansible to wait for 3600 seconds to complete the task and poll: 10 is the polling
time in seconds to check if the download is complete.

- name: Long running task
 hosts: demoservers
 remote_user: devops
 tasks:
 - name: Download big file
 get_url:
 url: http://demo.example.com/bigfile.tar.gz
 async: 3600
 poll: 10

Deferring asynchronous tasks

Long running operations or maintenance scripts can be carried out with other tasks, whereas
checks for completion can be deferred until later using the wait_for module. To configure
Ansible to not wait for the job to complete, set the value of poll to 0 so that Ansible starts the
command and instead of polling for its completion it moves to the next tasks.

- name: Restart and wait until the server is rebooted
 hosts: demoservers
 remote_user: devops
 tasks:
 - name: restart machine
 shell: sleep 2 && shutdown -r now "Ansible updates triggered"
 async: 1
 poll: 0
 become: true
 ignore_errors: true

 - name: waiting for server to come back
 wait_for:
 host: "{{ inventory_hostname }}"
 state: started
 delay: 30
 timeout: 300
 port: 22
 delegate_to: localhost
 become: false

For the running tasks that take an extremely long time to run, you can configure Ansible to wait
for the job as long as it takes. To do this, set the value of async to 0.

Asynchronous task status

While an asynchronous task is running, you can also check its completion status by using Ansible
async_status module. The module requires the job or task identifier as its parameter.

Asynchronous tasks

DO407-A2.3-en-2-20170725 291

Async status - fire-forget.yml
- name: Async status with fire and forget task
 hosts: demoservers
 remote_user: devops
 become: true
 tasks:

 - name: Download big file
 get_url:
 url: http://demo.example.com/bigfile.tar.gz
 async: 3600
 poll: 0
 register: download_sleeper

 - name: Wait for download to finish
 async_status:
 jid: "{{ download_sleeper.ansible_job_id }}"
 register: job_result
 until: job_result.finished
 retries: 30

The output of the playbook when executed:

[student@demo ~]$ ansible-playbook fire-forget.yml

PLAY [Async status with fire and forget task] **********************************

TASK [setup] ***
ok: [demo.example.com]

TASK [Download big file] ***
ok: [demo.example.com]

TASK [Wait for download to finish] ***
FAILED - RETRYING: TASK: Wait for download to fins (29 retries left). Result
 was: {u'ansible_job_id': u'963772827414.1563', u'started': 1, u'changed': False,
 u'finished': 0, u'results_file': u'/root/.ansible_async/963772827414.1563',
 'invocation': {'module_name': u'async_status', u'module_args': {u'jid':
 u'963772827414.1563', u'mode': u'status'}}}
... Output omitted ...
changed: [demo.example.com]

PLAY RECAP ***
demo.example.com : ok=3 changed=1 unreachable=0 failed=0

Chapter 8. Optimizing Ansible

292 DO407-A2.3-en-2-20170725

References
Rolling Update Batch Size — Delegation, Rolling Updates, and Local Actions — Ansible
Documentation
http://docs.ansible.com/ansible/playbooks_delegation.html#rolling-update-batch-
size

Asynchronous Actions and Polling — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_async.html

async_status - Obtain status of asynchronous task — Ansible Documentation
http://docs.ansible.com/ansible/async_status_module.html

Ansible Performance Tuning (For Fun and Profit)
https://www.ansible.com/blog/ansible-performance-tuning

http://docs.ansible.com/ansible/playbooks_delegation.html#rolling-update-batch-size
http://docs.ansible.com/ansible/playbooks_delegation.html#rolling-update-batch-size
http://docs.ansible.com/ansible/playbooks_async.html
http://docs.ansible.com/ansible/async_status_module.html
https://www.ansible.com/blog/ansible-performance-tuning

Guided Exercise: Configuring Parallelism

DO407-A2.3-en-2-20170725 293

Guided Exercise: Configuring Parallelism

In this exercise, you will run a playbook which uses a script to performs a long-running process
on servera.lab.example.com using an asynchronous task. Instead of waiting for the task to
get completed, you will check the status using the async_status module.

Outcomes

You should be able to:

• Configure parallelism using an asynchronous task in a playbook.

Before you begin

Log in to workstation as student using student as the password.

On workstation, run the lab configure-async setup script. The setup script checks that
Ansible is installed on workstation, creates a directory structure for the lab environment and
an inventory file named hosts.

[student@workstation ~]$ lab configure-async setup

Steps

1. From workstation, as the student user, change to the directory ~/configure-async.

[student@workstation ~]$ cd ~/configure-async
[student@workstation configure-async]$

2. Create a script file named longfiles.j2 under the ~/configure-async/templates
directory, with the following content.

#!/bin/bash
echo "emptying $2" > $2
for i in {00..30}; do
 echo "run $i, $1"
 echo "run $i for $1" >> $2
 sleep 1
done

3. Create a playbook named async.yml under the lab's project directory. In the playbook,
use the webservers inventory host group, the devops remote user, and for privilege
escalation, use the root user and sudo method.

async.yml
- name: longfiles async playbook
 hosts: webservers
 remote_user: devops
 become: true

4. In the playbook file async.yml, define a task to:

• Copy the longfiles.j2 script under the ~/configure-async/templates directory
to the managed host under /usr/local/bin/longfiles.

Chapter 8. Optimizing Ansible

294 DO407-A2.3-en-2-20170725

• Change the file and group ownership to root, and change permission of the script to
0755.

...output-omitted...
 tasks:
 - name: template longfiles script
 template:
 src: templates/longfiles.j2
 dest: /usr/local/bin/longfiles
 owner: root
 group: root
 mode: 0755

5. Define a task and use the async keyword in the playbook file, async.yml, to:

• Run the longfiles file copied previously under /usr/local/bin/longfiles with
arguments foo, bar, and baz and their corresponding output files /tmp/foo.file, /
tmp/bar.file and /tmp/baz.file respectively. For example: /usr/local/bin/
longfiles foo /tmp/foo.file

• Use the async keyword to wait the for the task for 110 second and set the value of poll
to 0 so that Ansible starts the command and then runs in the background. Register a
script_sleeper variable to store the completion status of the command started.

...output-omitted...
 - name: run longfiles script
 command: "/usr/local/bin/longfiles {{ item }} /tmp/{{ item }}.file"
 async: 110
 poll: 0
 with_items:
 - foo
 - bar
 - baz
 register: script_sleeper

6. In the playbook, async.yml, define a task to switch on the debug mode to see the value
stored in the variable script_sleeper.

...output-omitted...
 - name: show script_sleeper value
 debug:
 var: script_sleeper

7. In the playbook, async.yml, define a task in the playbook that will keep checking the status
of the async task:

• Use the async_status module to check the status of the async task triggered
previously using the variable script_sleeper.result.

• Set the maximum retries to 30.

...output-omitted...
 - name: check status of longfiles script
 async_status: "jid={{ item.ansible_job_id }}"
 register: job_result
 until: job_result.finished

DO407-A2.3-en-2-20170725 295

 retries: 30
 with_items: "{{ script_sleeper.results }}"

8. The completed async.yml playbook should have the following content:

async.yml
- name: longfiles async playbook
 hosts: webservers
 remote_user: devops
 become: true

 tasks:
 - name: template longfiles script
 template:
 src: templates/longfiles.j2
 dest: /usr/local/bin/longfiles
 owner: root
 group: root
 mode: 0755

 - name: run longfiles script
 command: "/usr/local/bin/longfiles {{ item }} /tmp/{{ item }}.file"
 async: 110
 poll: 0
 with_items:
 - foo
 - bar
 - baz
 register: script_sleeper

 - name: show script_sleeper value
 debug:
 var: script_sleeper

 - name: check status of longfiles script
 async_status: "jid={{ item.ansible_job_id }}"
 register: job_result
 until: job_result.finished
 retries: 30
 with_items: "{{ script_sleeper.results }}"

Check the syntax of the async.yml playbook. Correct any errors that you find.

[student@workstation configure-async]$ ansible-playbook --syntax-check async.yml

playbook: async.yml

9. Run the playbook async.yml.

Observe the job ids listed as ansible_job_id to each job running on
servera.lab.example.com, that were run in parallel using the async keyword. The
task check status of longfiles script retries to see if the started jobs are complete using the
async_status Ansible module.

[student@workstation configure-async]$ ansible-playbook async.yml

...output-omitted...
TASK [run longfiles script] ***
ok: [servera.lab.example.com] => (item=foo)

Chapter 8. Optimizing Ansible

296 DO407-A2.3-en-2-20170725

ok: [servera.lab.example.com] => (item=bar)
ok: [servera.lab.example.com] => (item=baz)

TASK [show script_sleeper value] ***
ok: [servera.lab.example.com] => {
 "script_sleeper": {
 "changed": false,
 "msg": "All items completed",
 "results": [
 {
 "_ansible_item_result": true,
 "_ansible_no_log": false,
 "_ansible_parsed": true,
 "ansible_job_id": "330645500410.4595",
 "changed": true,
 "finished": 0,
 "item": "foo",
 "results_file": "/root/.ansible_async/330645500410.4595",
 "started": 1
 },
 {
 "_ansible_item_result": true,
 "_ansible_no_log": false,
 "_ansible_parsed": true,
 "ansible_job_id": "408042741097.4686",
 "changed": true,
 "finished": 0,
 "item": "bar",
 "results_file": "/root/.ansible_async/408042741097.4686",
 "started": 1
 },
 {
 "_ansible_item_result": true,
 "_ansible_no_log": false,
 "_ansible_parsed": true,
 "ansible_job_id": "408778868074.4778",
 "changed": true,
 "finished": 0,
 "item": "baz",
 "results_file": "/root/.ansible_async/408778868074.4778",
 "started": 1
 }
]
 }
}

TASK [check status of longfiles script] **
FAILED - RETRYING: TASK: check status of longfiles script (29 retries left).
...output-omitted...
FAILED - RETRYING: TASK: check status of longfiles script (25 retries left).
changed: [servera.lab.example.com] => (item={'_ansible_parsed': True, 'changed':
 True, '_ansible_no_log': False, u'ansible_job_id':
 u'330645500410.4595', u'started': 1, '_ansible_item_result': True, 'item': u'foo',
 u'finished': 0, u'results_file': u'/root/.ansib
le_async/330645500410.4595'})
changed: [servera.lab.example.com] => (item={'_ansible_parsed': True, 'changed':
 True, '_ansible_no_log': False, u'ansible_job_id':
 u'408042741097.4686', u'started': 1, '_ansible_item_result': True, 'item': u'bar',
 u'finished': 0, u'results_file': u'/root/.ansib
le_async/408042741097.4686'})
changed: [servera.lab.example.com] => (item={'_ansible_parsed': True, 'changed':
 True, '_ansible_no_log': False, u'ansible_job_id':
 u'408778868074.4778', u'started': 1, '_ansible_item_result': True, 'item': u'baz',
 u'finished': 0, u'results_file': u'/root/.ansib

DO407-A2.3-en-2-20170725 297

le_async/408778868074.4778'})

PLAY RECAP ***
servera.lab.example.com : ok=5 changed=3 unreachable=0 failed=0

Cleanup

Run the lab configure-async cleanup command to clean up the lab.

[student@workstation ~]$ lab configure-async cleanup

Chapter 8. Optimizing Ansible

298 DO407-A2.3-en-2-20170725

Lab: Optimizing Ansible

In this lab, you will deploy an upgraded web page to add a new feature using the serial
keyword for rolling updates, on two web servers, serverb.lab.example.com and
serverc.lab.example.com, running behind a load balancer.

The HAProxy load balancer and the web servers are preconfigured on
serverd.lab.example.com, serverb.lab.example.com, and
serverc.lab.example.com, respectively.

After the upgrade of the web page, the web servers needs to be rebooted one at a time
before adding them back to the load balancer pool without affecting the site availability using
delegation.

Outcomes

You should be able to write playbooks with tasks:

• To delegate tasks to other hosts.

• To asynchronously run jobs in parallel.

• To use rolling updates.

Before you begin

Log in to workstation as student, using student as the password.

On workstation, run the lab optimize-ansible-lab setup script. It checks if Ansible
is installed on workstation and creates a directory structure for the lab environment
with an inventory file. The script preconfigures serverb.lab.example.com and
serverc.lab.example.com as web servers and configures serverd.lab.example.com
as the load balancer server using a round-robin algorithm. The script also creates a templates
directory under the lab's working directory.

The inventory file, /home/student/lab-optimizing-ansible/inventory/hosts, points
to serverb.lab.example.com and serverc.lab.example.com as hosts of [webservers]
group and serverd.lab.example.com as part of the [lbserver] group.

[student@workstation ~]$ lab optimize-ansible-lab setup

Steps

1. Log in to workstation as the student user and change to the ~/lab-optimizing-
ansible directory.

cd ~/lab-optimizing-ansible
[student@workstation lab-optimize-ansible]$

2. As the web servers are preconfigured as part of the lab setup, use curl to browse http://
serverd.lab.example.com. Run the curl command twice to see the web content from
the web servers running on serverb and serverc with serverd serving as the load
balancer server.

DO407-A2.3-en-2-20170725 299

3. You will update the web site shown previously, by adding a new line to the web content.
Modify the web page template, named index-ver1.html.j2, under the templates
directory by adding the sentence: A new feature added.

<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to {{ inventory_hostname }}.
</h1>
<h2>A new feature added.</h2>
</body>
</html>

4. Create a playbook named upgrade_webserver.yml under ~/lab-optimizing-
ansible. The playbook should use privilege escalation using the remote user devops and
run on hosts from the webservers group.

The updates should be pushed to one server at a time.

5. Create a task in the upgrade_webserver.yml playbook to remove the web server from
the load balancer pool. Use the haproxy Ansible module to remove from the haproxy load
balancer. The task needs to be delegated to server in the [lbserver] inventory group.

The haproxy module is used to disable a back end server from HAProxy using socket
commands. To disable a back end server from the back end pool named app, socket path of
/var/lib/haproxy/stats, and wait until the server reports a status of maintenance, use
the following:

haproxy: state=disabled backend=app host={{ inventory_hostname }} socket=/var/lib/
haproxy/stats wait=yes

6. Create a task in the upgrade_webserver.yml playbook to copy the updated page
template from the lab working directory, templates/index-ver1.html.j2, to the
web server's document root, /var/www/html/index.html. Also register a variable,
pageupgrade, which will be used later to invoke other tasks.

7. Create a task in the upgrade_webserver.yml playbook to restart the web servers after 1
minute, using an asynchronous task that will not wait more than 1 second for it to complete.
The task should not be polled for completion.

Use ignore_errors as true and execute the task if the previously registered
pageupgrade variable has changed.

8. Create a task in the upgrade_webserver.yml playbook to wait for the web server to
be rebooted. Use delegation to delegate the task to the local machine. The task should be
executed when the variable, pageupgrade, has changed. Privilege escalation is not required
for this task.

Use the wait_for module to wait for the web server to be rebooted and set host to
inventory_hostname, state to started, delay to 80, and timeout to 200.

9. Create a task in the upgrade_webserver.yml playbook to wait for the web server port
to be started. As in the preconfigured web server, the httpd service is configured to start

Chapter 8. Optimizing Ansible

300 DO407-A2.3-en-2-20170725

at boot time. Set the host to inventory_hostname, port to 80, state to started, and
timeout to 20.

10. Create a final task in the upgrade_webserver.yml playbook to add the web server to the
load balancer pool after the upgrade of the web page. Use the haproxy Ansible module to
add the server back to the HAProxy load balancer pool. The task needs to be delegated to
all members of the [lbserver] inventory group.

The haproxy module is used to enable a back end server from HAProxy using socket
commands. To enable a back end server from the back end pool named app, socket path of
/var/lib/haproxy/stats, and to wait until the server reports healthy status, use the
following:

haproxy: state=enabled backend=app host={{
inventory_hostname }} socket=/var/lib/haproxy/stats wait=yes

11. Review the upgrade-webserver.yml playbook file.

12. Check the syntax of the playbook upgrade-webserver.yml. In case of syntax errors
resolve them before proceeding to the next step.

[student@workstation lab-optimizing-ansible]$ ansible-playbook --syntax-check
 upgrade_webserver.yml

playbook: upgrade_webserver.yml

13. Run the playbook, upgrade-webserver.yml, to upgrade the server.

The restart task will take several minutes, so move on to the next step when it gets to that
point in executing the playbook.

Important
The playbook will wait at the wait for server restart task up to 2 minutes
to allow the web server to reboot.

14. From workstation.lab.example.com, use curl to view the web link http://
serverd.lab.example.com.

Run the curl command several times while the playbook is executing to verify the
webserver is still reachable, and that the host changes after the playbook moves on to
reboot the other machine.

15. Wait until the remaining tasks from the playbook complete on both serverb and serverc.

16. Verify by browsing the website using the link http://serverd.lab.example.com.
Rerun the curl command to see the updated pages from two different web servers,
serverb.lab.example.com and serverc.lab.example.com.

DO407-A2.3-en-2-20170725 301

Evaluation

From workstation, run the lab optimize-ansible-lab script with the grade argument
to confirm success on this exercise. Correct any reported failures and rerun the script until
successful.

[student@workstation ~]$ lab optimize-ansible-lab grade

Cleanup

Run the lab optimize-ansible-lab cleanup command to clean up after the lab.

[student@workstation ~]$ lab optimize-ansible-lab cleanup

Chapter 8. Optimizing Ansible

302 DO407-A2.3-en-2-20170725

Solution
In this lab, you will deploy an upgraded web page to add a new feature using the serial
keyword for rolling updates, on two web servers, serverb.lab.example.com and
serverc.lab.example.com, running behind a load balancer.

The HAProxy load balancer and the web servers are preconfigured on
serverd.lab.example.com, serverb.lab.example.com, and
serverc.lab.example.com, respectively.

After the upgrade of the web page, the web servers needs to be rebooted one at a time
before adding them back to the load balancer pool without affecting the site availability using
delegation.

Outcomes

You should be able to write playbooks with tasks:

• To delegate tasks to other hosts.

• To asynchronously run jobs in parallel.

• To use rolling updates.

Before you begin

Log in to workstation as student, using student as the password.

On workstation, run the lab optimize-ansible-lab setup script. It checks if Ansible
is installed on workstation and creates a directory structure for the lab environment
with an inventory file. The script preconfigures serverb.lab.example.com and
serverc.lab.example.com as web servers and configures serverd.lab.example.com
as the load balancer server using a round-robin algorithm. The script also creates a templates
directory under the lab's working directory.

The inventory file, /home/student/lab-optimizing-ansible/inventory/hosts, points
to serverb.lab.example.com and serverc.lab.example.com as hosts of [webservers]
group and serverd.lab.example.com as part of the [lbserver] group.

[student@workstation ~]$ lab optimize-ansible-lab setup

Steps

1. Log in to workstation as the student user and change to the ~/lab-optimizing-
ansible directory.

[student@workstation ~]$ cd ~/lab-optimizing-ansible
[student@workstation lab-optimize-ansible]$

2. As the web servers are preconfigured as part of the lab setup, use curl to browse http://
serverd.lab.example.com. Run the curl command twice to see the web content from
the web servers running on serverb and serverc with serverd serving as the load
balancer server.

[student@workstation lab-optimizing-ansible]$ curl http://serverd.lab.example.com
<html>
<head><title>My Page</title></head>
<body>

Solution

DO407-A2.3-en-2-20170725 303

<h1>
Welcome to serverc.lab.example.com.
</h1>
</body>
</html>
[student@workstation lab-optimizing-ansible]$ curl http://serverd.lab.example.com
<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to serverb.lab.example.com.
</h1>
</body>
</html>

3. You will update the web site shown previously, by adding a new line to the web content.
Modify the web page template, named index-ver1.html.j2, under the templates
directory by adding the sentence: A new feature added.

<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to {{ inventory_hostname }}.
</h1>
<h2>A new feature added.</h2>
</body>
</html>

4. Create a playbook named upgrade_webserver.yml under ~/lab-optimizing-
ansible. The playbook should use privilege escalation using the remote user devops and
run on hosts from the webservers group.

The updates should be pushed to one server at a time.

4.1. Create a playbook named upgrade_webserver.yml under ~/lab-optimizing-
ansible. Use the hosts that are part of the webservers inventory group and use
privilege escalation using remote user devops. Since the updates need to pushed to
one server at a time, set the serial keyword with a value of 1.

The contents of the upgrade_webserver.yml file should be as follows:

- name: Upgrade Webservers
 hosts: webservers
 remote_user: devops
 become: yes
 serial: 1

5. Create a task in the upgrade_webserver.yml playbook to remove the web server from
the load balancer pool. Use the haproxy Ansible module to remove from the haproxy load
balancer. The task needs to be delegated to server in the [lbserver] inventory group.

The haproxy module is used to disable a back end server from HAProxy using socket
commands. To disable a back end server from the back end pool named app, socket path of

Chapter 8. Optimizing Ansible

304 DO407-A2.3-en-2-20170725

/var/lib/haproxy/stats, and wait until the server reports a status of maintenance, use
the following:

haproxy: state=disabled backend=app host={{ inventory_hostname }} socket=/var/lib/
haproxy/stats wait=yes

5.1. Create a task in the upgrade_webserver.yml playbook to remove the web
server from the load balancer pool. The haproxy Ansible module can be used
to remove the web server from the haproxy load balancer. The task needs to be
delegated to the server from the [lbserver] inventory group. The contents of the
upgrade_webserver.yml file should appear as follows:

 tasks:
 - name: disable the server in haproxy
 haproxy:
 state: disabled
 backend: app
 host: "{{ inventory_hostname }}"
 socket: /var/lib/haproxy/stats
 wait: yes
 delegate_to: "{{ item }}"
 with_items: "{{ groups.lbserver }}"

6. Create a task in the upgrade_webserver.yml playbook to copy the updated page
template from the lab working directory, templates/index-ver1.html.j2, to the
web server's document root, /var/www/html/index.html. Also register a variable,
pageupgrade, which will be used later to invoke other tasks.

 - name: upgrade the page
 template:
 src: "templates/index-ver1.html.j2"
 dest: "/var/www/html/index.html"
 register: pageupgrade

7. Create a task in the upgrade_webserver.yml playbook to restart the web servers after 1
minute, using an asynchronous task that will not wait more than 1 second for it to complete.
The task should not be polled for completion.

Use ignore_errors as true and execute the task if the previously registered
pageupgrade variable has changed.

7.1. Create a task in the upgrade_webserver.yml playbook to reboot the web server by
adding a task to the playbook. Use the command module to shut down the machine.

 - name: restart machine
 command: shutdown -r +1 "Ansible updates triggered"

7.2. Continue editing the restart machine task in the upgrade_webserver.yml
playbook. Use the async keyword to wait for 1 second for the completion and set
poll to 0 to disable polling. Set ignore_errors to true and execute the task if the
previously registered pageupgrade variable has changed. Add the lines in bold to the
playbook.

Solution

DO407-A2.3-en-2-20170725 305

 - name: restart machine
 command: shutdown -r +1 "Ansible updates triggered"
 async: 1
 poll: 0
 ignore_errors: true
 when: pageupgrade.changed

8. Create a task in the upgrade_webserver.yml playbook to wait for the web server to
be rebooted. Use delegation to delegate the task to the local machine. The task should be
executed when the variable, pageupgrade, has changed. Privilege escalation is not required
for this task.

Use the wait_for module to wait for the web server to be rebooted and set host to
inventory_hostname, state to started, delay to 80, and timeout to 200.

8.1. Create a task in the upgrade_webserver.yml playbook. Delegate the task to
localhost, and use the wait_for module to wait for the server to restart. Set
the host to the inventory_hostname variable, port to 22, state to started,
delay to 80, and timeout to 200. The task should be executed when the variable,
pageupgrade, has changed.

Privilege escalation is not required for this task. The task in the
upgrade_webserver.yml playbook should read as follows:

 - name: wait for webserver to restart
 wait_for:
 host: "{{ inventory_hostname }}"
 port: 22
 state: started
 delay: 80
 timeout: 200
 become: False
 delegate_to: 127.0.0.1
 when: pageupgrade.changed

9. Create a task in the upgrade_webserver.yml playbook to wait for the web server port
to be started. As in the preconfigured web server, the httpd service is configured to start
at boot time. Set the host to inventory_hostname, port to 80, state to started, and
timeout to 20.

 - name: wait for webserver to come up
 wait_for:
 host: "{{ inventory_hostname }}"
 port: 80
 state: started
 timeout: 20

10. Create a final task in the upgrade_webserver.yml playbook to add the web server to the
load balancer pool after the upgrade of the web page. Use the haproxy Ansible module to
add the server back to the HAProxy load balancer pool. The task needs to be delegated to
all members of the [lbserver] inventory group.

Chapter 8. Optimizing Ansible

306 DO407-A2.3-en-2-20170725

The haproxy module is used to enable a back end server from HAProxy using socket
commands. To enable a back end server from the back end pool named app, socket path of
/var/lib/haproxy/stats, and to wait until the server reports healthy status, use the
following:

haproxy: state=enabled backend=app host={{
inventory_hostname }} socket=/var/lib/haproxy/stats wait=yes

Include the following content in the upgrade_webserver.yml playbook:

 - name: enable the server in haproxy
 haproxy:
 state: enabled
 backend: app
 host: "{{ inventory_hostname }}"
 socket: /var/lib/haproxy/stats
 wait: yes
 delegate_to: "{{ item }}"
 with_items: "{{ groups.lbserver }}"

11. Review the upgrade-webserver.yml playbook file.

The following should be the contents of upgrade-webserver.yml:

- name: Upgrade Webservers
 hosts: webservers
 remote_user: devops
 become: yes
 serial: 1

 tasks:
 - name: disable the server in haproxy
 haproxy:
 state: disabled
 backend: app
 host: "{{ inventory_hostname }}"
 socket: /var/lib/haproxy/stats
 wait: yes
 delegate_to: "{{ item }}"
 with_items: "{{ groups.lbserver }}"

 - name: upgrade the page
 template:
 src: "templates/index-ver1.html.j2"
 dest: "/var/www/html/index.html"
 register: pageupgrade

 - name: restart machine
 command: shutdown -r +1 "Ansible updates triggered"
 async: 1
 poll: 0
 ignore_errors: true
 when: pageupgrade.changed

 - name: wait for webserver to restart
 wait_for:
 host: "{{ inventory_hostname }}"

Solution

DO407-A2.3-en-2-20170725 307

 port: 22
 state: started
 delay: 80
 timeout: 200
 become: False
 delegate_to: 127.0.0.1
 when: pageupgrade.changed

 - name: wait for webserver to come up
 wait_for:
 host: "{{ inventory_hostname }}"
 port: 80
 state: started
 timeout: 20

 - name: enable the server in haproxy
 haproxy:
 state: enabled
 backend: app
 host: "{{ inventory_hostname }}"
 socket: /var/lib/haproxy/stats
 wait: yes
 delegate_to: "{{ item }}"
 with_items: "{{ groups.lbserver }}"

12. Check the syntax of the playbook upgrade-webserver.yml. In case of syntax errors
resolve them before proceeding to the next step.

Check the syntax of the playbook upgrade-webserver.yml. In case of syntax errors,
either resolve them or download the playbook from http://materials.example.com/
playbooks/upgrade_webserver.yml before proceeding to the next step.

[student@workstation lab-optimizing-ansible]$ ansible-playbook --syntax-check
 upgrade_webserver.yml

playbook: upgrade_webserver.yml

13. Run the playbook, upgrade-webserver.yml, to upgrade the server.

The restart task will take several minutes, so move on to the next step when it gets to that
point in executing the playbook.

Important
The playbook will wait at the wait for server restart task up to 2 minutes
to allow the web server to reboot.

[student@workstation lab-optimizing-ansible]$ ansible-playbook upgrade_webserver.yml

PLAY [Upgrade Webservers] **

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [disable the server in haproxy] ***
changed: [serverb.lab.example.com -> serverd.lab.example.com] =>
 (item=serverd.lab.example.com)

Chapter 8. Optimizing Ansible

308 DO407-A2.3-en-2-20170725

TASK [upgrade the page] **
changed: [serverb.lab.example.com]

TASK [restart machine] ***
[WARNING]: Module invocation had junk after the JSON data: Broadcast message from
 root@serverb.lab.example.com (Mon 2017-06-26 11:33:03 EDT):
Ansible updates triggered The system is going down for reboot at Mon 2017-06-26
 11:34:03 EDT!

changed: [serverb.lab.example.com]

TASK [wait for webserver to restart] ***
....output omitted....

14. From workstation.lab.example.com, use curl to view the web link http://
serverd.lab.example.com.

Run the curl command several times while the playbook is executing to verify the
webserver is still reachable, and that the host changes after the playbook moves on to
reboot the other machine.

[student@workstation lab-optimizing-ansible]$ curl http://serverd.lab.example.com
<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to serverc.lab.example.com.
</h1>
</body>
</html>
[student@workstation lab-optimizing-ansible]$ curl http://serverd.lab.example.com
<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to serverb.lab.example.com.
</h1>
<h2>A new feature added.</h2>
</body>
</html>

15. Wait until the remaining tasks from the playbook complete on both serverb and serverc.

... Output omitted ...
TASK [wait for webserver to come up] ***
ok: [serverb.lab.example.com]

TASK [enable the server in haproxy] **
changed: [serverb.lab.example.com -> serverd.lab.example.com] =>
 (item=serverd.lab.example.com)

PLAY [Upgrade Webservers] **

TASK [Gathering Facts] ***
ok: [serverc.lab.example.com]

TASK [disable the server in haproxy] ***
changed: [serverc.lab.example.com -> serverd.lab.example.com] =>
 (item=serverd.lab.example.com)

Solution

DO407-A2.3-en-2-20170725 309

TASK [upgrade the page] **
changed: [serverc.lab.example.com]

TASK [restart machine] ***
[WARNING]: Module invocation had junk after the JSON data: Broadcast message from
 root@serverc.lab.example.com (Mon 2017-06-26 11:35:03 EDT):
Ansible updates triggered The system is going down for reboot at Mon 2017-06-26
 11:36:03 EDT!

changed: [serverc.lab.example.com]

TASK [wait for server to restart] **
ok: [serverc.lab.example.com -> localhost]

TASK [wait for webserver to come up] ***
ok: [serverc.lab.example.com]

TASK [enable the server in haproxy] **
changed: [serverc.lab.example.com -> serverd.lab.example.com] =>
 (item=serverd.lab.example.com)

PLAY RECAP ***
serverb.lab.example.com : ok=7 changed=4 unreachable=0 failed=0
serverc.lab.example.com : ok=7 changed=4 unreachable=0 failed=0

16. Verify by browsing the website using the link http://serverd.lab.example.com.
Rerun the curl command to see the updated pages from two different web servers,
serverb.lab.example.com and serverc.lab.example.com.

[student@workstation lab-optimizing-ansible]$ curl http://serverd.lab.example.com
<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to serverc.lab.example.com.
</h1>
<h2>A new feature added.</h2>
</body>
</html>
[student@workstation lab-optimizing-ansible]$ curl http://serverd.lab.example.com
<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to serverb.lab.example.com.
</h1>
<h2>A new feature added.</h2>
</body>
</html>

Evaluation

From workstation, run the lab optimize-ansible-lab script with the grade argument
to confirm success on this exercise. Correct any reported failures and rerun the script until
successful.

[student@workstation ~]$ lab optimize-ansible-lab grade

Chapter 8. Optimizing Ansible

310 DO407-A2.3-en-2-20170725

Cleanup

Run the lab optimize-ansible-lab cleanup command to clean up after the lab.

[student@workstation ~]$ lab optimize-ansible-lab cleanup

Summary

DO407-A2.3-en-2-20170725 311

Summary

In this chapter, you learned:

• Host patterns are used to specify which managed hosts a play or ad hoc command should
target

• Ansible can delegate tasks to run on a different host than the targeted managed host if actions
need to be taken on a different server to configure the managed host

• Ansible normally attempts to run tasks in parallel on multiple hosts at the same time. The
number of simultaneous connections can be controlled in the configuration file and in the
playbook

• The async keyword triggers Ansible to run the job in the background, and the poll keyword
controls how often Ansible will check to see if the task has finished

312

DO407-A2.3-en-2-20170725 313

TRAINING

CHAPTER 9

IMPLEMENTING ANSIBLE VAULT

Overview

Goal Manage encryption with Ansible Vault.

Objectives • Create, edit, rekey, encrypt, and decrypt files.

• Run a playbook with Ansible Vault.

Sections • Configuring Ansible Vault (and Guided Exercise)

• Executing with Ansible Vault (and Guided Exercise)

Lab • Implementing Ansible Vault

Chapter 9. Implementing Ansible Vault

314 DO407-A2.3-en-2-20170725

Configuring Ansible Vault

Objectives
After completing this section, students should be able to:

• Use Ansible Vault to create a new encrypted file or encrypt an existing file.

• Use Ansible Vault to view, edit, or change the password on an existing encrypted file.

• Remove encryption from a file that has been encrypted with Ansible Vault.

Ansible Vault
Ansible may need access to sensitive data such as passwords or API keys in order to configure
remote servers. Normally, this information might be stored as plain text in inventory variables or
other Ansible files. But in that case, any user with access to the Ansible files or a version control
system which stores the Ansible files would have access to this sensitive data. This poses an
obvious security risk.

There are two primary ways to store this data more securely:

• Use Ansible Vault, which is included with Ansible and can encrypt and decrypt any structured
data file used by Ansible.

• Use a third-party key management service to store the data in the cloud, such as Vault by
HashiCorp, Amazon's AWS Key Management Service, or Microsoft Azure Key Vault.

In this part of the course, you will learn how to use Ansible Vault.

To use Ansible Vault, a command line tool called ansible-vault is used to create, edit, encrypt,
decrypt, and view files. Ansible Vault can encrypt any structured data file used by Ansible. This
might include inventory variables, included variable files in a playbook, variable files passed as an
argument when executing the playbook, or variables defined in Ansible roles.

Important
Ansible Vault does not implement its own cryptographic functions but uses an external
Python toolkit. Files are protected with symmetric encryption using AES256 with
a password as the secret key. Note that the way this is done has not been formally
audited by a third party.

Create an encrypted file

To create a new encrypted file use the command ansible-vault create filename. The
command will prompt for the new vault password and open a file using the default editor. This
is vim, but may be changed to vi in Ansible 2.1. A different editor may be used by setting
and exporting the $EDITOR variable. For example, to set the default editor to nano, export
EDITOR=nano.

[student@demo ~]$ ansible-vault create secret.yml
New Vault password: redhat

Ansible Vault

DO407-A2.3-en-2-20170725 315

Confirm New Vault password: redhat

Instead of entering the vault password through standard input, a vault password file can be used
to store the vault password. This file will need to be carefully protected through file permissions
and other means.

[student@demo ~]$ ansible-vault create --vault-password-file=vault-pass secret.yml

The cipher used to protect files is AES256 in recent versions of Ansible, but files encrypted with
older versions may still use 128-bit AES.

Edit an existing encrypted file

To edit an existing encrypted file, Ansible Vault provides the command ansible-vault edit
filename. This command will decrypt the file to a temporary file and allows you to edit the file.
When saved, it copies the content and removes the temporary file.

[student@demo ~]$ ansible-vault edit secret.yml
Vault password: redhat

Note
The edit subcommand always rewrites the file, so it should only be used when making
changes. This can have implications when the file is kept under version control. The
view subcommand should always be used to see the file's contents without making
changes.

Change the password for an encrypted file

The vault password can be changed using the command ansible-vault rekey filename.
This command can rekey multiple data files at once. It will ask for the original password and the
new password.

[student@demo ~]$ ansible-vault rekey secret.yml
Vault password: redhat
New Vault password: RedHat
Confirm New Vault password: RedHat
Rekey successful

When a using vault password file, use the --new-vault-password-file option:

[student@demo ~]$ ansible-vault rekey \
> --new-vault-password-file=NEW_VAULT_PASSWORD_FILE secret.yml

Encrypting an existing file

To encrypt a file that already exists, use the command ansible-vault encrypt filename.
This command can take the names of multiple files to be encrypted as arguments.

[student@demo ~]$ ansible-vault encrypt secret1.yml secret2.yml
New Vault password: redhat
Confirm New Vault password: redhat
Encryption successful

Chapter 9. Implementing Ansible Vault

316 DO407-A2.3-en-2-20170725

Use the --output=OUTPUT_FILE option to save the encrypted file with a new name. At most
one input file may be used with the --output option.

Viewing an encrypted file

Ansible Vault allows you to view the encrypted file using the command ansible-vault view
filename, without opening it for editing.

[student@demo ~]$ ansible-vault view secret1.yml
Vault password: secret
less 458 (POSIX regular expressions)
Copyright (C) 1984-2012 Mark Nudelman

less comes with NO WARRANTY, to the extent permitted by law.
For information about the terms of redistribution,
see the file named README in the less distribution.
Homepage: http://www.greenwoodsoftware.com/less
my_secret: "yJJvPqhsiusmmPPZdnjndkdnYNDjdj782meUZcw"

Decrypting an existing file

An already existing encrypted file can be permanently decrypted by using the command
ansible-vault decrypt filename. The --output option can be used when decrypting a
single file to save the decrypted file under a different name.

[student@demo ~]$ ansible-vault decrypt secret1.yml --output=secret1-decrypted.yml
Vault password: redhat
Decryption successful

References
ansible-vault(1) man page

Vault — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_vault.html

http://docs.ansible.com/ansible/playbooks_vault.html

Guided Exercise: Configuring Ansible Vault

DO407-A2.3-en-2-20170725 317

Guided Exercise: Configuring Ansible Vault

In this exercise, you will create a new encrypted file, edit the file, and change the password on an
existing encrypted file. You will also learn how to encrypt and decrypt an existing file.

Outcomes

You should be able to :

• Create a new encrypted file.

• Edit an encrypted file.

• View content of an encrypted file.

• Change the password of an encrypted file.

• Encrypt and decrypt an existing file.

Before you begin

Log into workstation as student using student as a password.

On workstation, run the lab configure-ansible-vault setup script. The setup script
checks that Ansible is installed on workstation, and creates a directory structure for the lab
environment.

[student@workstation ~]$ lab configure-ansible-vault setup

Steps

1. From workstation, as the student user, change to the directory ~/conf-ansible-
vault.

[student@workstation ~]$ cd ~/conf-ansible-vault
[student@workstation conf-ansible-vault]$

2. Create an encrypted file named super-secret.yml under ~/conf-ansible-vault. Use
redhat as the vault password.

2.1. Create an encrypted file named super-secret.yml under ~/conf-ansible-vault.
Enter redhat as the vault password when prompted, and confirm.

[student@workstation conf-ansible-vault]$ ansible-vault create super-secret.yml
New Vault password: redhat
Confirm New Vault password: redhat

2.2. Enter the following content into the file. Save and exit the file when you are finished.

This is encrypted.

3. Attempt to view the content of the encrypted file, super-secret.yml.

[student@workstation conf-ansible-vault]$ cat super-secret.yml
$ANSIBLE_VAULT;1.1;AES256

Chapter 9. Implementing Ansible Vault

318 DO407-A2.3-en-2-20170725

30353232636462623438613666393263393238613363333735626661646265376566653765633565
3663386561393538333864306136316265636632386535330a653764616133343630303633323831
33653136313933636633623431646634636661333762393764396135333236316338656338383933
3635646662316335370a363264366138333434626261363465636331333539323734643363326138
34626565353831666333653139323965376335633132313162613838613561396462323037313132
3264386531353862396233323963613139343635323532346538

Since the file, super-secret.yml, is an encrypted file, you cannot view the content in
plain text. The default cipher used is AES (which is shared-secret based).

4. To view the content of the Ansible Vault encrypted file, use the command ansible-vault
view super-secret.yml. When prompted, enter redhat as the password.

[student@workstation conf-ansible-vault]$ ansible-vault view super-secret.yml
Vault password: redhat
This is encrypted.

5. Now edit the encrypted file super-secret.yml to add some new content. Use redhat as
the vault password.

5.1. Open the super-secret.yml encrypted file for editing.

[student@workstation conf-ansible-vault]$ ansible-vault edit super-secret.yml
Vault password: redhat

5.2. Add the following content to the file. Save and exit the file when you are finished.

This is also encrypted.

6. Verify by viewing the content of super-secret.yml, using ansible-vault view
super-secret.yml. Use redhat as the password.

[student@workstation conf-ansible-vault]$ ansible-vault view super-secret.yml
Vault password: redhat
This is encrypted.
This is also encrypted.

7. Download the encrypted passwd.yml file from http://materials.example.com/
playbooks/passwd.yml.

[student@workstation conf-ansible-vault]$ wget http://materials.example.com/
playbooks/passwd.yml

8. Change the vault password of the passwd.yml file, using the command ansible-vault
rekey passwd.yml. The current password for the passwd.yml file is redhat. Change
this password to ansible.

[student@workstation conf-ansible-vault]$ ansible-vault rekey passwd.yml
Vault password: redhat
New Vault password: ansible
Confirm New Vault password: ansible
Rekey successful

DO407-A2.3-en-2-20170725 319

9. Decrypt the encrypted file, passwd.yml, and save the file as passwd-decrypted.yml.
Use the ansible-vault decrypt subcommand with the --output option. Enter
ansible as the password.

[student@workstation conf-ansible-vault]$ ansible-vault decrypt passwd.yml --
output=passwd-decrypted.yml
Vault password: ansible
Decryption successful

10. Verify the file passwd-decrypted.yml is decrypted by viewing its content using cat.

[student@workstation conf-ansible-vault]$ cat passwd-decrypted.yml
user_pw: 5pjsBJxAWUs6pRWD5itO/

11. Encrypt the existing file passwd-decrypted.yml and save the file as passwd-
encrypted.yml. Use the ansible-vault encrypt subcommand with the --output
option. Enter redhat as the password and confirm by re-entering the password.

[student@workstation conf-ansible-vault]$ ansible-vault encrypt passwd-decrypted.yml
 --output=passwd-encrypted.yml
New Vault password: redhat
Confirm New Vault password: redhat
Encryption successful

Evaluation

From workstation, run the lab configure-ansible-vault script with the grade
argument, to confirm success on this exercise. Correct any reported failures and rerun the script
until successful.

[student@workstation ~]$ lab configure-ansible-vault grade

Chapter 9. Implementing Ansible Vault

320 DO407-A2.3-en-2-20170725

Executing with Ansible Vault

Objectives
After completing this section, students should be able to:

• Run a playbook referencing files encrypted with Ansible Vault.

Playbooks and Ansible Vault
In order to run a playbook that accesses files encrypted with Ansible Vault, the encryption
password needs to be provided to the ansible-playbook command. If the command is run
without doing this, it will return an error:

[student@demo ~]$ ansible-playbook site.yml
ERROR: A vault password must be specified to decrypt vars/api_key.yml

To provide the vault password interactively, use the --ask-vault-pass option.

[student@demo ~]$ ansible-playbook --ask-vault-pass site.yml
Vault password: redhat

Alternatively, a file that stores the encryption password in plain text can be used by specifying
it with the --vault-password-file option. The password should be a string stored as a
single line in the file. Since that file contains the sensitive plain text password, it is vital that it be
protected through file permissions and other security measures.

[student@demo ~]$ ansible-playbook --vault-password-file=vault-pw-file site.yml

The default location of the password file can also be specified by using the
$ANSIBLE_VAULT_PASSWORD_FILE environment variable.

Important
All files protected by Ansible Vault that are used by a playbook must be encrypted
using the same password.

Recommended practices for variable file management

To simplify management, it makes sense to set up your Ansible project so that sensitive variables
and all other variables are kept in separate files. The file or files containing the sensitive
variables can then be protected with the ansible-vault command.

Remember that the preferred way to manage group variables and host variables is to create
directories at the playbook level. The group_vars directory normally contains variable files with
names matching host groups to which they apply. The host_vars directory normally contains
variable files with names matching hostnames of managed hosts to which they apply.

However, instead of using files in group_vars or host_vars, you can use directories for
each host group or managed host. Those directories can then contain multiple variable files,
all of which are used by the host group or managed host. For example, in the following project

Demonstration: Executing with Ansible Vault

DO407-A2.3-en-2-20170725 321

directory for playbook.yml, members of the webservers host group will use variables in the
group_vars/webservers/vars file, and demo.example.com will use the variables in both
host_vars/demo.example.com/vars and host_vars/demo.example.com/vault:

.
├── ansible.cfg
├── group_vars
│ └── webservers
│ └── vars
├── host_vars
│ └── demo.example.com
│ ├── vars
│ └── vault
├── inventory
└── playbook.yml

In this scenario, the advantage is that most variables for demo.example.com can be placed in
vars, but sensitive variables can be placed in vault. Then the administrator can use ansible-
vault to encrypt vault, while leaving vars as plain text.

There is nothing special about the file names being used in this example inside the host_vars/
demo.example.com directory. That directory could contain more files, some encrypted by
Ansible Vault and some which are not.

Playbook variables (as opposed to inventory variables) can also be protected with Ansible Vault.
Sensitive playbook variables can be placed in a separate file which is encrypted with Ansible
Vault and which is included into the playbook through a vars_files directive. This can be
useful, since playbook variables take precedence over inventory variables.

Speeding up Vault operations

By default, Ansible uses functions from the python-crypto package to encrypt and decrypt vault
files. If there are many encrypted files, decrypting them at start-up may cause a perceptible
delay. To speed this up, install the python-cryptography package:

[student@demo ~]$ sudo yum install python-cryptography

The python-cryptography package provides a Python library which exposes cryptographic
recipes and primitives. The default Ansible installation uses PyCrypto for these cryptographic
operations.

Demonstration: Executing with Ansible Vault
1. Log in to workstation as the student user. Jump to the ~/exec-ansible-vault

directory.

[student@workstation ~]$ cd ~/exec-ansible-vault

2. Create an encrypted file named secret.yml in ~/exec-ansible-vault/vars/ which
will contain sensitive playbook variables. Provide a password of redhat for the vault and
confirm it. This will open a new file in the default text editor, vim.

[student@workstation exec-ansible-vault]$ ansible-vault create vars/secret.yml
New Vault password: redhat
Confirm New Vault password: redhat

Chapter 9. Implementing Ansible Vault

322 DO407-A2.3-en-2-20170725

3. Once in the text editor, define an associative array variable called newusers. Each entry
should have two keys: name for the username and pw for the password.

Define one user with a name of demouser1 and a password of redhat. Define a second
user with a name of demouser2 and a password of RedHat.

newusers:
 - name: demouser1
 pw: redhat
 - name: demouser2
 pw: RedHat

Save the changes and exit the editor. This will create vars/secret.yml.

[student@workstation exec-ansible-vault]$ tree
.
├── ansible.cfg
├── createusers.yml
├── inventory
│ └── hosts
└── vars
 └── secret.yml

2 directories, 4 files
[student@workstation exec-ansible-vault]$ file vars/secret.yml
vars/secret.yml: ASCII text

4. Display the contents of the create_users.yml playbook. Note how it references vars/
secret.yml as an external playbook variables file.

- name: create user accounts for all our servers
 hosts: devservers
 remote_user: devops
 become: yes
 vars_files:
 - vars/secret.yml
 tasks:
 - name: Creating users from secret.yml
 user:
 name: "{{ item.name }}"
 password: "{{ item.pw | password_hash('sha512') }}"
 with_items: "{{ newusers }}"

5. Use ansible-playbook --syntax-check to check the syntax of the
create_users.yml playbook,

[student@workstation exec-ansible-vault]$ ansible-playbook --syntax-check \
> create_users.yml
ERROR! Decryption failed

It failed because it was unable to decrypt vars/secret.yml to check its syntax. Add the
--ask-vault-pass option to prompt for the vault password while decrypting vars/
secret.yml. In case of any syntax error, resolve before continuing further.

Demonstration: Executing with Ansible Vault

DO407-A2.3-en-2-20170725 323

[student@workstation exec-ansible-vault]$ ansible-playbook --syntax-check \
> --ask-vault-pass create_users.yml
Vault password: redhat

playbook: create_users.yml

6. Create a password file, called vault-pass, to use for the playbook execution instead
of asking for a password. Store the vault password redhat as plain text. Change the
permission of the file to 0600.

[student@workstation exec-ansible-vault]$ echo 'redhat' > vault-pass
[student@workstation exec-ansible-vault]$ chmod 0600 vault-pass

7. Execute the Ansible playbook, this time using the vault password file. This creates the
demouser1 and demouser2 users on the managed hosts using the passwords stored as the
pw fields in secret.yml.

[student@workstation exec-ansible-vault]$ ansible-playbook \
> --vault-password-file=vault-pass create_users.yml

8. Verify that both users (demouser1 and demouser2) were created properly by the
playbook. Connect to servera.lab.example.com via SSH as those users.

The -o PreferredAuthentications=password option must be used, because
servera has been configured with SSH keys that permit authentication to the system
without a password. In this case, we want to test out the password, so force SSH to ignore
the SSH key.

• Log in to servera.lab.example.com as the demouser1 user, using the password of
redhat. Exit when you are finished.

[student@workstation exec-ansible-vault]$ ssh \
> -o PreferredAuthentications=password demouser1@servera.lab.example.com
demouser1@servera.lab.example.com's password: redhat
Warning: Permanently added 'servera.lab.example.com,172.25.250.10' (ECDSA) to the
 list of known hosts.
[demouser1@servera ~]$ exit

• Log in to servera.lab.example.com as the demouser2 user, using the password of
RedHat. Exit when you are finished.

[student@workstation exec-ansible-vault]$ ssh \
> -o PreferredAuthentications=password demouser2@servera.lab.example.com
demouser2@servera.lab.example.com's password: RedHat
Last login: Fri Apr 8 10:30:58 2016 from workstation.lab.example.com
[demouser2@servera ~]$ exit

Chapter 9. Implementing Ansible Vault

324 DO407-A2.3-en-2-20170725

References
ansible-playbook(1) and ansible-vault(1) man pages

Running a Playbook With Vault — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_vault.html#running-a-playbook-with-
vault

Variables and Vaults — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_best_practices.html#best-practices-for-
variables-and-vaults

http://docs.ansible.com/ansible/playbooks_vault.html#running-a-playbook-with-vault
http://docs.ansible.com/ansible/playbooks_vault.html#running-a-playbook-with-vault
http://docs.ansible.com/ansible/playbooks_best_practices.html#best-practices-for-variables-and-vaults
http://docs.ansible.com/ansible/playbooks_best_practices.html#best-practices-for-variables-and-vaults

Guided Exercise: Executing with Ansible Vault

DO407-A2.3-en-2-20170725 325

Guided Exercise: Executing with Ansible Vault

In this exercise, you will use Ansible Vault to encypt the file containing passwords
on the local system and use the encrypted file in a playbook to create users on the
servera.lab.example.com managed host.

Outcomes

You should be able to:

• Use the variables defined in the encrypted file to execute a playbook.

Before you begin

Log into workstation as student using student as a password.

On workstation, run the lab execute-ansible-vault setup script. This script
ensures that Ansible is installed on workstation and creates a directory structure for
the lab environment. This directory structure includes an inventory file that points to
servera.lab.example.com as a managed host, which is part of the devservers group.

[student@workstation ~]$ lab execute-ansible-vault setup

Steps

1. From workstation, as the student user, jump to the directory ~/exec-ansible-vault.

[student@workstation ~]$ cd ~/exec-ansible-vault

2. Create an encrypted file named secret.yml in the ~/exec-ansible-vault/ directory.
This file will define the password variables and store the passwords to be used in the
playbook.

Use the associative array variable, newusers, to define users and passwords using the name
and pw keys, respectively. Define the ansibleuser1 user and its redhat password. Also
define the ansibleuser2 user and its Re4H1T password.

Set the vault password to redhat.

2.1. Create an encrypted file named secret.yml in ~/exec-ansible-vault/. Provide
a password of redhat for the vault and confirm it. This will open a file in the default
editor vim.

[student@workstation exec-ansible-vault]$ ansible-vault create secret.yml
New Vault password: redhat
Confirm New Vault password: redhat

2.2. Add a associative array variable, named newusers, containing key value pair of user
name and password as follows:

newusers:
 - name: ansibleuser1
 pw: redhat
 - name: ansibleuser2

Chapter 9. Implementing Ansible Vault

326 DO407-A2.3-en-2-20170725

 pw: Re4H1T

Save the file.

3. Create a playbook which will use the variables defined in the secret.yml encrypted file.
Name the playbook create_users.yml and create it under the ~/exec-ansible-
vault/ directory.

Configure the playbook to use the devservers host group, which was defined by the lab
setup script in the inventory file. Run this playbook as the devops user on the remote
managed host. Configure the playbook to create the ansibleuser1 and ansibleuser2
users.

The password stored as plain text in the variable, pw, should be converted into password
hash using hashing filters password_hash to get SHA512 hashed password and passed as
an argument to the user module. For example,

user:
 name: user1
 password: "{{ 'passwordsaresecret' | password_hash('sha512') }}"

The content of the create_users.yml should be:

- name: create user accounts for all our servers
 hosts: devservers
 become: True
 remote_user: devops
 vars_files:
 - secret.yml
 tasks:
 - name: Creating users from secret.yml
 user:
 name: "{{ item.name }}"
 password: "{{ item.pw | password_hash('sha512') }}"
 with_items: "{{ newusers }}"

4. Check the syntax of the create_users.yml playbook using ansible-playbook --
syntax-check. Use the --ask-vault-pass option to prompt for the vault password
which guards secret.yml. In case of syntax error, resolve before continuing further.

[student@workstation exec-ansible-vault]$ ansible-playbook --syntax-check --ask-
vault-pass create_users.yml
Vault password: redhat

playbook: create_users.yml

5. Create a password file to use for the playbook execution instead of asking for a password.
The file should be called vault-pass and it should store the redhat vault password as a
plain text. Change the permission of the file to 0600.

[student@workstation exec-ansible-vault]$ echo 'redhat' > vault-pass
[student@workstation exec-ansible-vault]$ chmod 0600 vault-pass

DO407-A2.3-en-2-20170725 327

6. Execute the Ansible playbook, using the vault password file to create the ansibleuser1
and ansibleuser2 users on a remote system using the passwords stored as variables in
the secret.yml Ansible Vault encrypted file. Use the vault password file vault-pass.

[student@workstation exec-ansible-vault]$ ansible-playbook --vault-password-
file=vault-pass create_users.yml

PLAY [create user accounts for all our servers] ********************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Creating users from secret.yml] **
changed: [servera.lab.example.com] => (item={u'name': u'ansibleuser1', u'pw':
 u'redhat'})
changed: [servera.lab.example.com] => (item={u'name': u'ansibleuser2', u'pw':
 u'Re4H1T'})

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

7. Verify that both users were created properly by the playbook by connecting via SSH to
servera.lab.example.com. Since we want to test the password, force SSH to skip the
SSH key. Use the -o PreferredAuthentications=password option to SSH, because
servera has been configured with an SSH key that will authenticate without a password.

7.1. Login to servera.lab.example.com as the ansibleuser1 user, using the password
of redhat, to verify the user was created properly by the playbook. Exit when you are
finished.

[student@workstation exec-ansible-vault]$ ssh -o
 PreferredAuthentications=password ansibleuser1@servera.lab.example.com
ansibleuser1@servera.lab.example.com's password: redhat
Warning: Permanently added 'servera.lab.example.com,172.25.250.10' (ECDSA) to
 the list of known hosts.
[ansibleuser1@servera ~]$ exit

7.2. Login to servera.lab.example.com as the ansibleuser2 user using the password
of Re4H1T to verify the user was created properly by the playbook. Exit when you are
finished.

[student@workstation exec-ansible-vault]$ ssh -o
 PreferredAuthentications=password ansibleuser2@servera.lab.example.com
ansibleuser2@servera.lab.example.com's password: Re4H1T
[ansibleuser2@servera ~]$ exit

Evaluation

From workstation, run the lab execute-ansible-vault script with the grade argument,
to confirm success on this exercise. Correct any reported failures and rerun the script until
successful.

[student@workstation ~]$ lab execute-ansible-vault grade

Chapter 9. Implementing Ansible Vault

328 DO407-A2.3-en-2-20170725

Cleanup

Run the lab execute-ansible-vault cleanup command to clean up the lab.

[student@workstation ~]$ lab execute-ansible-vault cleanup

Lab: Implementing Ansible Vault

DO407-A2.3-en-2-20170725 329

Lab: Implementing Ansible Vault

In this lab, you will encrypt and decrypt the YAML file containing variables for LUKS encryption
which are sensitive. Use the encrypted file containing variables in a playbook to execute
remote tasks on serverb.lab.example.com to create a LUKS encrypted partition on /
dev/vdb. Edit the encrypted role variable file to add the path of the new 256-bit key file and
add tasks to insert this key in an available key slot on the encrypted device, /dev/vdb, on
serverb.lab.example.com.

Outcomes

You should be able to:

• Encrypt a file.

• View an encrypted file.

• Run playbooks using an encrypted file.

• Change the password of an existing encrypted file.

• Edit and decrypt an existing encrypted file.

Before you begin

Log into workstation as student, using student as a password. Run the lab ansible-
vault-lab setup command.

[student@workstation ~]$ lab ansible-vault-lab setup

This command confirms that Ansible is installed on workstation and it creates a directory
structure for the lab environment. It also creates the ~student/lab-ansible-vault/
inventory/hosts inventory file that includes serverb.lab.example.com as a managed
host that is part of the [prodservers] host group.

Steps

1. Log in as the student user on workstation. Change to the ~/lab-ansible-vault
project directory.

2. Use the ansible-galaxy command to create a role named encryptdisk and its
directory structure.

3. Edit the role variable file to add the following variables:

Variable name Variable value

luks_dev /dev/vdb

luks_name crypto

luks_pass Re4H1TAns1BLe

vars file for encryptdisk
luks_dev: /dev/vdb
luks_name: crypto

Chapter 9. Implementing Ansible Vault

330 DO407-A2.3-en-2-20170725

luks_pass: Re4H1TAns1BLe

4. Encrypt the role variable file. Use redhat as the the vault password.

5. Create task to encrypt a block device as specified using the luks_dev variable.

Download the task file from http://materials.example.com/playbooks/
encryptdisk-tasks.yml and configure this file as a task for your playbook. These tasks
will encrypt a block device using the luks_* variables defined in the role's variables file.

6. Create a playbook named encrypt.yml directly under the project directory that calls the
encryptdisk role. Apply the role to the prodservers inventory host group. Do not forget
to specify the remote user devops and enable privilege escalation.

7. Check the syntax of the playbook and ensure the roles are defined correctly. Use the
redhat vault password when prompted.

If the playbook passed the syntax check, run the playbook to create an encrypted disk using
the /dev/vdb block device on serverb and mount it under /crypto.

8. Verify the Ansible playbook created /dev/vdb as a LUKS disk partition and mounted it as /
crypto on serverb.lab.example.com.

9. Download keyfile-encrypted.j2 from http://materials.example.com/
playbooks/keyfile-encrypted.j2. and rekey it. The original password for the file is
RedHat. Change this password to redhat.

10. Permanently decrypt the Ansible Vault encrypted key file, keyfile-encrypted.j2, and
name the new file keyfile.j2. This file will be added to an available key slot on the LUKS
encrypted device on serverb. The vault password for this template file is redhat.

Store the decrypted keyfile.j2 in the encryptdisk role's templates directory.

11. Edit the encrypted role variable file to add a new luks_key variable which points to the
decrypted keyfile.j2 file created in the previous step. Use the vault password of redhat.

12. Add a default addkey variable in roles/encryptdisk/defaults/main.yml and set
the value to no. This variable will be used as a conditional for adding a key file to the LUKS
encrypted device.

13. Add a new task to the encryptdisk role to:

• Copy the decrypted keyfile.j2 key file from the role templates directory to
serverb.lab.example.com as /root/keyfile. Set the owner to root, the group to
root, and the mode to 0600.

• Use the luks_key variable to substitute the path of the key file stored in the encrypted
role's variables file. This task should be executed when the addkey: yes variable is
defined when calling the encryptdisk role.

14. Add another task to the encryptdisk role to:

• Use a command similar to the following example to add the key file to an available key slot
on the encrypted disk on serverb.lab.example.com.

DO407-A2.3-en-2-20170725 331

• Use the luks_pass and luks_dev variables to substitute the passphrase used earlier
to encrypt the disk and the name of the device. This task should be invoked when the
addkey=yes parameter is passed as an argument when running the playbook.

The following example shows how to add a key file to an available key slot on an encrypted
LUKS disk. Replace password with the proper password for the device, devicename with the
proper encrypted device name, and /path/to/keyfilename with the proper path to the keyfile.

echo password | cryptsetup luksAddKey devicename /path/to/keyfilename

15. Edit the ~/lab-ansible-vault/encrypt.yml playbook to specify the addkey variable
to the encryptdisk role. Set the value of addkey to yes.

16. Check the syntax of the playbook and ensure roles are defined correctly. Use the redhat
vault password when prompted.

If the playbook passed the syntax check, run the playbook to add the key file to the
encrypted device on serverb.lab.example.com.

17. Verify the play worked correctly by accessing the LUKS encrypted file, using the key file
added to the encrypted disk on serverb.lab.example.com. Use the following commands
on serverb to sequentially verify the encrypted disk using the cryptsetup command:

17.1. Dump the header information of a LUKS device using the cryptsetup luksDump /
dev/vdb command.

17.2. Unmount the mounted volume to close the encrypted device.

17.3. Remove the existing crypto mapping and wipe the key from kernel memory.

17.4. Open the /dev/vdb LUKS device and set up a crypto mapping after successful
verification of the supplied /root/keyfile key file.

17.5. Mount the filesystems found in /etc/fstab.

17.6. List information about all available block devices.

Exit serverb.lab.example.com when finished.

Evaluation

Run the lab ansible-vault-lab command on workstation, with the grade argument,
to confirm success on this exercise. Correct any reported failures and rerun the script until
successful.

[student@workstation ~]$ lab ansible-vault-lab grade

Cleanup

Run the lab ansible-vault-lab cleanup command to clean up after the lab.

[student@workstation ~]$ lab ansible-vault-lab cleanup

Chapter 9. Implementing Ansible Vault

332 DO407-A2.3-en-2-20170725

Solution

In this lab, you will encrypt and decrypt the YAML file containing variables for LUKS encryption
which are sensitive. Use the encrypted file containing variables in a playbook to execute
remote tasks on serverb.lab.example.com to create a LUKS encrypted partition on /
dev/vdb. Edit the encrypted role variable file to add the path of the new 256-bit key file and
add tasks to insert this key in an available key slot on the encrypted device, /dev/vdb, on
serverb.lab.example.com.

Outcomes

You should be able to:

• Encrypt a file.

• View an encrypted file.

• Run playbooks using an encrypted file.

• Change the password of an existing encrypted file.

• Edit and decrypt an existing encrypted file.

Before you begin

Log into workstation as student, using student as a password. Run the lab ansible-
vault-lab setup command.

[student@workstation ~]$ lab ansible-vault-lab setup

This command confirms that Ansible is installed on workstation and it creates a directory
structure for the lab environment. It also creates the ~student/lab-ansible-vault/
inventory/hosts inventory file that includes serverb.lab.example.com as a managed
host that is part of the [prodservers] host group.

Steps

1. Log in as the student user on workstation. Change to the ~/lab-ansible-vault
project directory.

[student@workstation ~]$ cd ~/lab-ansible-vault
[student@workstation lab-ansible-vault]$

2. Use the ansible-galaxy command to create a role named encryptdisk and its
directory structure.

[student@workstation lab-ansible-vault]$ ansible-galaxy init --offline -p roles/
 encryptdisk
- encryptdisk was created successfully

3. Edit the role variable file to add the following variables:

Variable name Variable value

luks_dev /dev/vdb

luks_name crypto

Solution

DO407-A2.3-en-2-20170725 333

Variable name Variable value

luks_pass Re4H1TAns1BLe

Edit the encryptdisk role variable file, ~/lab-ansible-vault/roles/encryptdisk/
vars/main.yml, to add the following variables:

vars file for encryptdisk
luks_dev: /dev/vdb
luks_name: crypto
luks_pass: Re4H1TAns1BLe

4. Encrypt the role variable file. Use redhat as the the vault password.

Use ansible-vault to encrypt the roles/encryptdisk/vars/main.yml role variable
file.

[student@workstation lab-ansible-vault]$ ansible-vault encrypt roles/encryptdisk/
vars/main.yml
New Vault password: redhat
Confirm New Vault password: redhat
Encryption successful

Use ansible-vault view to display the encrypted file and confirm that the vault
password works.

[student@workstation lab-ansible-vault]$ ansible-vault view roles/encryptdisk/vars/
main.yml
Vault password: redhat

vars file for encryptdisk
luks_dev: /dev/vdb
luks_name: crypto
luks_pass: Re4H1TAns1BLe

5. Create task to encrypt a block device as specified using the luks_dev variable.

Download the task file from http://materials.example.com/playbooks/
encryptdisk-tasks.yml and configure this file as a task for your playbook. These tasks
will encrypt a block device using the luks_* variables defined in the role's variables file.

5.1. Download the task file from http://materials.example.com/playbooks/
encryptdisk-tasks.yml.

[student@workstation lab-ansible-vault]$ wget http://materials.example.com/
playbooks/encryptdisk-tasks.yml

5.2. Move the task file to roles/encryptdisk/tasks/main.yml. This task will encrypt a
block using the luks_* variables.

[student@workstation lab-ansible-vault]$ mv encryptdisk-tasks.yml roles/
encryptdisk/tasks/main.yml

Chapter 9. Implementing Ansible Vault

334 DO407-A2.3-en-2-20170725

6. Create a playbook named encrypt.yml directly under the project directory that calls the
encryptdisk role. Apply the role to the prodservers inventory host group. Do not forget
to specify the remote user devops and enable privilege escalation.

Create the ~/lab-ansible-vault/encrypt.yml playbook with the following content:

- name: Encrypt disk on serverb using LUKS
 hosts: prodservers
 remote_user: devops
 become: yes
 roles:
 - encryptdisk

7. Check the syntax of the playbook and ensure the roles are defined correctly. Use the
redhat vault password when prompted.

[student@workstation lab-ansible-vault]$ ansible-playbook --syntax-check --ask-
vault-pass encrypt.yml
Vault password: redhat

playbook: encrypt.yml

If the playbook passed the syntax check, run the playbook to create an encrypted disk using
the /dev/vdb block device on serverb and mount it under /crypto.

[student@workstation lab-ansible-vault]$ ansible-playbook --ask-vault-pass
 encrypt.yml
Vault password: redhat

PLAY [Encrypt disk on serverb using LUKS] **************************************

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [encryptdisk : Check if device already unlocked.] *************************
changed: [serverb.lab.example.com]

TASK [encryptdisk : Umount volumes] **
skipping: [serverb.lab.example.com]

TASK [encryptdisk : Close disk... because of crypting/action requested] ********
skipping: [serverb.lab.example.com]

TASK [encryptdisk : Check if device already unlocked.] *************************
changed: [serverb.lab.example.com]

TASK [encryptdisk : encrypt disk] **
changed: [serverb.lab.example.com]

TASK [encryptdisk : open encrypted disk] ***************************************
changed: [serverb.lab.example.com]

TASK [encryptdisk : Create directory /crypto] **********************************
changed: [serverb.lab.example.com]

TASK [encryptdisk : mkfs on /dev/vdb] **
changed: [serverb.lab.example.com]

Solution

DO407-A2.3-en-2-20170725 335

TASK [encryptdisk : create cryptab file] ***************************************
changed: [serverb.lab.example.com]

TASK [encryptdisk : mount the /dev/mapper/crypto] ******************************
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=9 changed=8 unreachable=0 failed=0

8. Verify the Ansible playbook created /dev/vdb as a LUKS disk partition and mounted it as /
crypto on serverb.lab.example.com.

[student@workstation lab-ansible-vault]$ ansible prodservers -a 'lsblk'
serverb.lab.example.com | SUCCESS | rc=0 >>
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 253:0 0 40G 0 disk
└─vda1 253:1 0 40G 0 part /
vdb 253:16 0 1G 0 disk
└─crypto 252:0 0 1022M 0 crypt /crypto

9. Download keyfile-encrypted.j2 from http://materials.example.com/
playbooks/keyfile-encrypted.j2. and rekey it. The original password for the file is
RedHat. Change this password to redhat.

[student@workstation lab-ansible-vault]$ wget http://materials.example.com/
playbooks/keyfile-encrypted.j2
... Output omitted ...
[student@workstation lab-ansible-vault]$ ansible-vault rekey keyfile-encrypted.j2
Vault password: RedHat
New Vault password: redhat
Confirm New Vault password: redhat
Rekey successful

10. Permanently decrypt the Ansible Vault encrypted key file, keyfile-encrypted.j2, and
name the new file keyfile.j2. This file will be added to an available key slot on the LUKS
encrypted device on serverb. The vault password for this template file is redhat.

Store the decrypted keyfile.j2 in the encryptdisk role's templates directory.

[student@workstation lab-ansible-vault]$ ansible-vault decrypt keyfile-encrypted.j2
 --output=roles/encryptdisk/templates/keyfile.j2
Vault password: redhat
Decryption successful

11. Edit the encrypted role variable file to add a new luks_key variable which points to the
decrypted keyfile.j2 file created in the previous step. Use the vault password of redhat.

Edit the encrypted role variable file, roles/encryptdisk/vars/main.yml, to add a new
variable luks_key: templates/keyfile.j2.

[student@workstation lab-ansible-vault]$ ansible-vault edit roles/encryptdisk/vars/
main.yml
Vault password: redhat

Chapter 9. Implementing Ansible Vault

336 DO407-A2.3-en-2-20170725

vars file for encryptdisk
luks_dev: /dev/vdb
luks_name: crypto
luks_pass: Re4H1TAns1BLe
luks_key: templates/keyfile.j2

12. Add a default addkey variable in roles/encryptdisk/defaults/main.yml and set
the value to no. This variable will be used as a conditional for adding a key file to the LUKS
encrypted device.

defaults file for encryptdisk
addkey: no

13. Add a new task to the encryptdisk role to:

• Copy the decrypted keyfile.j2 key file from the role templates directory to
serverb.lab.example.com as /root/keyfile. Set the owner to root, the group to
root, and the mode to 0600.

• Use the luks_key variable to substitute the path of the key file stored in the encrypted
role's variables file. This task should be executed when the addkey: yes variable is
defined when calling the encryptdisk role.

Edit the role's task file, roles/encryptdisk/tasks/main.yml, to include the new task.
The contents of the file should look like the following:

tasks file for Ansible Vault lab
... Output omitted ...
 - name: copying the key file
 template:
 src: "{{ luks_key }}"
 dest: /root/keyfile
 owner: root
 group: root
 mode: 0600
 when: addkey

14. Add another task to the encryptdisk role to:

• Use a command similar to the following example to add the key file to an available key slot
on the encrypted disk on serverb.lab.example.com.

• Use the luks_pass and luks_dev variables to substitute the passphrase used earlier
to encrypt the disk and the name of the device. This task should be invoked when the
addkey=yes parameter is passed as an argument when running the playbook.

The following example shows how to add a key file to an available key slot on an encrypted
LUKS disk. Replace password with the proper password for the device, devicename with the
proper encrypted device name, and /path/to/keyfilename with the proper path to the keyfile.

echo password | cryptsetup luksAddKey devicename /path/to/keyfilename

Solution

DO407-A2.3-en-2-20170725 337

Add the following lines to the roles/encryptdisk/tasks/main.yml task file:

tasks file for Ansible Vault lab
... Output omitted ...
 - name: add new keyslot to encrypted disk
 shell: echo {{ luks_pass }} | cryptsetup luksAddKey {{ luks_dev }} /root/keyfile
 when: addkey

15. Edit the ~/lab-ansible-vault/encrypt.yml playbook to specify the addkey variable
to the encryptdisk role. Set the value of addkey to yes.

- name: Encrypt disk on serverb using LUKS
 hosts: prodservers
 remote_user: devops
 become: yes
 roles:
 - role: encryptdisk
 addkey: yes

16. Check the syntax of the playbook and ensure roles are defined correctly. Use the redhat
vault password when prompted.

[student@workstation lab-ansible-vault]$ ansible-playbook --syntax-check --ask-
vault-pass encrypt.yml
Vault password: redhat

playbook: encrypt.yml

If the playbook passed the syntax check, run the playbook to add the key file to the
encrypted device on serverb.lab.example.com.

[student@workstation lab_ansible_vault]$ ansible-playbook --ask-vault-pass
 encrypt.yml
Vault password: redhat
... Output omitted ...
TASK [encryptdisk : copying the key file] **************************************
changed: [serverb.lab.example.com]

TASK [encryptdisk : add new keyslot to encrypted disk] *************************
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=13 changed=10 unreachable=0 failed=0

17. Verify the play worked correctly by accessing the LUKS encrypted file, using the key file
added to the encrypted disk on serverb.lab.example.com. Use the following commands
on serverb to sequentially verify the encrypted disk using the cryptsetup command:

17.1. Dump the header information of a LUKS device using the cryptsetup luksDump /
dev/vdb command.

[student@workstation lab-ansible-vault]$ ssh root@serverb

Chapter 9. Implementing Ansible Vault

338 DO407-A2.3-en-2-20170725

[root@serverb ~]# cryptsetup luksDump /dev/vdb
... Output omitted ...
Key Slot 0: ENABLED
 Iterations: 319599
 Salt: 71 ba be b7 8a 1d db 4f c7 64 d0 58 3e 73 a8 48
 84 a3 4b 12 54 96 59 09 4d 3c 4e 24 d2 67 e7 a2
 Key material offset: 8
 AF stripes: 4000
Key Slot 1: ENABLED
 Iterations: 332899
 Salt: 55 30 60 ce 4c e5 a0 a6 49 fe e0 86 c0 56 da 2d
 56 0c 88 54 1c 07 27 27 18 b9 ec 22 99 e8 ab 2e
 Key material offset: 264
 AF stripes: 4000
... Output omitted ...

17.2. Unmount the mounted volume to close the encrypted device.

[root@serverb ~]# umount /crypto

17.3. Remove the existing crypto mapping and wipe the key from kernel memory.

[root@serverb ~]# cryptsetup close crypto

17.4. Open the /dev/vdb LUKS device and set up a crypto mapping after successful
verification of the supplied /root/keyfile key file.

[root@serverb ~]# cryptsetup open /dev/vdb crypto -d /root/keyfile

17.5. Mount the filesystems found in /etc/fstab.

[root@serverb ~]# mount -a

17.6. List information about all available block devices.

[root@serverb ~]# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 253:0 0 40G 0 disk
└─vda1 253:1 0 40G 0 part /
vdb 253:16 0 1G 0 disk
└─crypto 252:0 0 1022M 0 crypt /crypto

Exit serverb.lab.example.com when finished.

[root@serverb ~]# exit
[student@workstation lab-ansible-vault]$

Evaluation

Run the lab ansible-vault-lab command on workstation, with the grade argument,
to confirm success on this exercise. Correct any reported failures and rerun the script until
successful.

Solution

DO407-A2.3-en-2-20170725 339

[student@workstation ~]$ lab ansible-vault-lab grade

Cleanup

Run the lab ansible-vault-lab cleanup command to clean up after the lab.

[student@workstation ~]$ lab ansible-vault-lab cleanup

Chapter 9. Implementing Ansible Vault

340 DO407-A2.3-en-2-20170725

Summary

In this chapter, you learned:

• Ansible Vault is one way to protect sensitive data like password hashes and private keys for
deployment using Ansible playbooks

• Ansible Vault can use symmetric encryption (normally AES-256) to encrypt and decrypt any
structured data file used by Ansible

• Ansible Vault can be used to create and encrypt a text file if it does not already exist or
encrypt and decrypt existing files.

• All Vault files used by a playbook need to use the same password

• It is recommended that users keep most variables in a normal file and sensitive variables in a
second file protected by Ansible Vault

• Ansible Vault operations can be run faster on Red Hat Enterprise Linux or CentOS by installing
the python-cryptography package.

DO407-A2.3-en-2-20170725 341

TRAINING

CHAPTER 10

TROUBLESHOOTING ANSIBLE

Overview

Goal Troubleshoot playbooks and managed hosts.

Objectives • Troubleshoot playbooks

• Troubleshoot managed hosts

Sections • Troubleshooting Playbooks (and Guided Exercise)

• Troubleshooting Ansible Managed Hosts (and Guided
Exercise)

Lab • Troubleshooting Ansible

Chapter 10. Troubleshooting Ansible

342 DO407-A2.3-en-2-20170725

Troubleshooting Playbooks

Objectives
After completing this section, students should be able to:

• Discuss common problems with playbooks

• Discuss tips to troubleshoot playbook issues

• Discuss recommended practices for playbook management

Log Files in Ansible
By default, Ansible is not configured to log its output to any log file. It provides a built-in logging
infrastructure that can be configured through the log_path parameter in the default section
of the ansible.cfg configuration file, or through the $ANSIBLE_LOG_PATH environment
variable. If any or both are configured, Ansible will store output from both the ansible and
ansible-playbook commands in the log file configured either through the ansible.cfg
configuration file, or the $ANSIBLE_LOG_PATH environment variable.

If Ansible log files are to be kept in the default log file directory, /var/log, then the playbooks
must be run as root or the permissions on /var/log must be opened up. More frequently log
files are created in the local playbook directory.

Note
Red Hat recommends that you configure logrotate to manage Ansible's log file.

The Debug module
One of the modules available for Ansible, the debug module, provides a better insight into
what is happening on the control node. This module can provide the value for a certain
variable at playbook execution time. This feature is key to managing tasks that use variables
to communicate with each other (for example, using the output of a task as the input to the
following one). The following examples make use of the msg and var statements inside of the
debug statement, to show the value at execution time of both the ansible_memfree_mb fact
and the output variable.

- debug:
 msg: "The free memory for this system is {{ ansible_memfree_mb }}"

- debug:
 var: output
 verbosity: 2

Managing errors

DO407-A2.3-en-2-20170725 343

Managing errors
There are several issues than can occur during a playbook run, mainly related to the syntax
of either the playbook or any of the templates it uses, or due to connectivity issues with the
managed hosts (for example, an error in the host name of the managed host in the inventory
file). Those errors are issued by the ansible-playbook command at execution time. The
--syntax-check option checks the YAML syntax for the playbook. If a playbook has a high
number of tasks, it may be useful to use either the --step, or the --start-at-task options in
the ansible-playbook command. The --step option executes tasks interactively, asking if it
should execute that task. The --start-at-task option starts the execution from a given task
and avoid repeating all the previous tasks execution.

[student@demo ~]# ansible-playbook play.yml --step

[student@demo ~]# ansible-playbook play.yml --start-at-task="start httpd service"

[student@demo ~]# ansible-playbook play.yml --syntax-check

Debugging with ansible-playbook
The output given by a playbook run with the ansible-playbook command is a good starting
point to start troubleshooting issues related to hosts managed by Ansible. For example, a
playbook is executed and the following output appears:

PLAY [playbook] **
... Output omitted ...
TASK: [Install a service] **
ok: [demoservera]
ok: [demoserverb]

PLAY RECAP **
demoservera : ok=2 changed=0 unreachable=0 failed=0
demoserverb : ok=2 changed=0 unreachable=0 failed=0

The previous output shows a PLAY header with the name of the play to be executed, then one
or more TASK headers are included. Each of these headers represent their associated task in the
playbook, and it will be executed in all the managed hosts belonging to the group included in the
playbook in the hosts parameter.

As each managed host executes the tasks, the host is displayed under the corresponding TASK
header, along with the task state on that managed host, which can be set to ok, fatal, or
changed. In the bottom of the playbook, at the PLAY RECAP section shows the number of tasks
executed for each managed host as its output state.

The default output provided by the ansible-playbook command does not provide enough
detail to troubleshoot issues that may appear on a managed host. The ansible-playbook -v
command provides additional debugging information, with up to four total levels.

Verbosity configuration

Option Description

-v The output data is displayed.

Chapter 10. Troubleshooting Ansible

344 DO407-A2.3-en-2-20170725

Verbosity configuration

-vv Both the output and input data are displayed.

-vvv Includes information about connections to managed hosts.

-vvvv Adds extra verbosity options to the connection plug-ins, including
the users being used in the managed hosts to execute scripts, and
what scripts have been executed.

Recommended Practices for playbook management
Although the previously discussed tools can help to identify and fix issues in playbooks, when
developing those playbooks it is important to keep in mind some recommended practices that
can help ease the process to troubleshoot issues. Here are some of the recommended practices
for playbook development.

• Always name tasks, providing a description in the name of the task's purpose. This name is
displayed when the playbook is executed.

• Include comments to add additional inline documentation about tasks.

• Make use of vertical whitespace effectively. YAML syntax is mostly based on spaces, so avoid
the usage of tabs in order to avoid errors.

• Try to keep the playbook as simple as possible. Only use the features that you need.

References
log_path (Configuration file — Ansible Documentation)
http://docs.ansible.com/ansible/intro_configuration.html#log-path

debug — Print statements during execution — Ansible Documentation
http://docs.ansible.com/ansible/debug_module.html

Best Practices — Ansible Documentation
http://docs.ansible.com/ansible/playbooks_best_practices.html

http://docs.ansible.com/ansible/intro_configuration.html#log-path
http://docs.ansible.com/ansible/debug_module.html
http://docs.ansible.com/ansible/playbooks_best_practices.html

Guided Exercise: Troubleshooting Playbooks

DO407-A2.3-en-2-20170725 345

Guided Exercise: Troubleshooting Playbooks

In this exercise, a playbook has errors that need to be corrected. The project structure from
previous units is going to be reused. The playbook for this exercise is the samba.yml playbook
that configures a Samba service on servera.lab.example.com.

Outcomes

You should be able to:

• Troubleshoot playbooks.

Before you begin

Log in to workstation as student using student as the password.

On workstation, run the lab troubleshoot-playbooks setup script. It checks if Ansible
is installed on workstation. It also creates the /home/student/troubleshooting/
directory, and downloads to this directory the inventory, samba.yml, and samba.conf.j2
files from http://materials.example.com/troubleshooting/.

[student@workstation ~]$ lab troubleshoot-playbooks setup

Steps

1. On workstation, change to the /home/student/troubleshooting/ directory.

[student@workstation ~]$ cd ~/troubleshooting/

2. Create a file named ansible.cfg in the current directory as follows, configuring
the log_path parameter for Ansible to start logging to the /home/student/
troubleshooting/ansible.log file, and the inventory parameter to use the /home/
student/troubleshooting/inventory file deployed by the lab script. When you are
finished, ansible.cfg should have the following contents:

[defaults]
log_path = /home/student/troubleshooting/ansible.log
inventory = /home/student/troubleshooting/inventory

3. Run the playbook. This playbook sets up a Samba server if everything is correct. The run will
fail due to missing double quotes on the random_var variable definition. The error message
is very indicative of the issue with the run. Notice the variable random_var is assigned a
value that contains a colon and is not quoted.

[student@workstation troubleshooting]$ ansible-playbook samba.yml
ERROR! Syntax Error while loading YAML.

The error appears to have been in '/home/student/troubleshooting/samba.yml': line 8,
 column 30, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

 install_state: installed
 random_var: This is colon: test

Chapter 10. Troubleshooting Ansible

346 DO407-A2.3-en-2-20170725

 ^ here

4. Check that the error has been properly logged to the /home/student/
troubleshooting/ansible.log file.

[student@workstation troubleshooting]$ tail ansible.log
The error appears to have been in '/home/student/troubleshooting/samba.yml': line 8,
 column 30, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

 install_state: installed
 random_var: This is colon: test
 ^ here

5. Edit the playbook and correct the error, and add quotes to the entire value being assigned to
random_var. The corrected edition of samba.yml should contain the following content:

... Output omitted ...
 vars:
 install_state: installed
 random_var: "This is colon: test"
... Output omitted ...

6. Run the playbook using the --syntax-check option. An error is issued due to the extra
space in the indentation on the last task, deliver samba config.

[student@workstation troubleshooting]$ ansible-playbook samba.yml --syntax-check
ERROR! Syntax Error while loading YAML.

The error appears to have been in '/home/student/troubleshooting/samba.yml': line
 43, column 4, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

 - name: deliver samba config
 ^ here

7. Edit the playbook and remove the extra space for all lines in that task. The corrected
playbook content should look like the following:

... Output omitted ...
 - name: configure firewall for samba
 firewalld:
 state: enabled
 permanent: true
 immediate: true
 service: samba

 - name: deliver samba config
 template:
 src: templates/samba.conf.j2

DO407-A2.3-en-2-20170725 347

 dest: /etc/samba/smb.conf
 owner: root
 group: root
 mode: 0644

8. Run the playbook using the --syntax-check option. An error is issued due to the
install_state variable being used as a parameter in the install samba task. It is not
quoted.

[student@workstation troubleshooting]$ ansible-playbook samba.yml --syntax-check
ERROR! Syntax Error while loading YAML.

The error appears to have been in '/home/student/troubleshooting/samba.yml': line
 14, column 15, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

 name: samba
 state: {{ install_state }}
 ^ here
We could be wrong, but this one looks like it might be an issue with
missing quotes. Always quote template expression brackets when they
start a value. For instance:

 with_items:
 - {{ foo }}

Should be written as:

 with_items:
 - "{{ foo }}"

9. Edit the playbook and correct the install samba task. The reference to the
install_state variable should be in quotes. The resulting file content should look like the
following:

... Output omitted ...
 tasks:
 - name: install samba
 yum:
 name: samba
 state: "{{ install_state }}"
... Output omitted ...

10. Run the playbook using the --syntax-check option. It should not show any additional
syntax errors.

[student@workstation troubleshooting]$ ansible-playbook samba.yml --syntax-check

playbook: samba.yml

11. Run the playbook. An error, related to SSH, will be issued.

[student@workstation troubleshooting]$ ansible-playbook samba.yml

Chapter 10. Troubleshooting Ansible

348 DO407-A2.3-en-2-20170725

PLAY [Install a samba server] **

TASK [Gathering Facts] ***
fatal: [servera.lab.exammple.com]: UNREACHABLE! => {"changed": false,
 "msg":"Failed to connect to the host via ssh: ssh: Could not resolve hostname
 servera.lab.exammple.com: Name or service not known\r\n", "unreachable": true}
 to retry, use: --limit @/home/student/troubleshooting/samba.retry

PLAY RECAP ***
servera.lab.exammple.com : ok=0 changed=0 unreachable=1 failed=0

12. Ensure the managed host servera.lab.example.com is running, using the ping
command.

[student@workstation troubleshooting]$ ping -c3 servera.lab.example.com
PING servera.lab.example.com (172.25.250.10) 56(84) bytes of data.
64 bytes from servera.lab.example.com (172.25.250.10): icmp_seq=1 ttl=64 time=0.247
 ms
64 bytes from servera.lab.example.com (172.25.250.10): icmp_seq=2 ttl=64 time=0.329
 ms
64 bytes from servera.lab.example.com (172.25.250.10): icmp_seq=3 ttl=64 time=0.320
 ms

--- servera.lab.example.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.247/0.298/0.329/0.041 ms

13. Ensure that you can connect to the managed host servera.lab.example.com as the
devops user using SSH, and that the correct SSH keys are in place. Log out again when you
have finished.

[student@workstation troubleshooting]$ ssh devops@servera.lab.example.com
Warning: Permanently added 'servera.lab.example.com,172.25.250.10' (ECDSA) to the
 list of known hosts.
... Output omitted ...
[devops@servera ~]$ exit
Connection to servera.lab.example.com closed.

14. Rerun the playbook with -vvvv to get more information about the run. An error is issued
because the servera.lab.example.com managed host is not reachable.

[student@workstation troubleshooting]$ ansible-playbook -vvvv samba.yml
Using /etc/ansible/ansible.cfg as config file
Loaded callback default of type stdout, v2.0
1 plays in samba.yml

PLAY [Install a samba server] **

TASK [Gathering Facts] ***
<servera.lab.exammple.com> ESTABLISH SSH CONNECTION FOR USER: devops
... Output omitted ...
fatal: [servera.lab.exammple.com]: UNREACHABLE! => { "changed": false, "msg":
 "Failed to connect to the host via ssh: OpenSSH_6.6.1, OpenSSL 1.0.1e-fips
 11 Feb 2013\r\ndebug1: Reading configuration data /home/student/.ssh/config\r
\ndebug1: /home/student/.ssh/config line 1: Applying options for *\r\ndebug1:
 Reading configuration data /etc/ssh/ssh_config\r\ndebug1: /etc/ssh/ssh_config line
 56: Applying options for *\r\ndebug1: auto-mux: Trying existing master\r\ndebug1:
 Control socket \"/home/student/.ansible/cp/d4775f48c9\" does not exist\r\nssh:

DO407-A2.3-en-2-20170725 349

 Could not resolve hostname servera.lab.exammple.com: Name or service not known\r
\n", "unreachable": true }
... Output omitted ...
PLAY RECAP ***
servera.lab.exammple.com : ok=0 changed=0 unreachable=1 failed=0

15. When using the highest level of verbosity with Ansible, the Ansible log file is a better option
to check output than the console. Check the output from the previous command in the /
home/student/troubleshooting/ansible.log file.

[student@workstation troubleshooting]$ tail ansible.log
... Output omitted ...
2017-07-11 03:51:56,460 p=3333 u=student | Using module file /usr/lib/python2.7/
site-packages/ansible/modules/system/setup.py
2017-07-11 03:51:56,531 p=3333 u=student | fatal: [servera.lab.exammple.com]:
 UNREACHABLE! => {
 "changed": false,
 "msg": "Failed to connect to the host via ssh: OpenSSH_6.6.1, OpenSSL 1.0.1e-
fips 11 Feb 2013\r\ndebug1: Reading configuration data /home/student/.ssh/config
\r\ndebug1: /home/student/.ssh/config line 1: Applying options for *\r\ndebug1:
 Reading configuration data /etc/ssh/ssh_config\r\ndebug1: /etc/ssh/ssh_config line
 56: Applying options for *\r\ndebug1: auto-mux: Trying existing master\r\ndebug1:
 Control socket \"/home/student/.ansible/cp/d4775f48c9\" does not exist\r\nssh:
 Could not resolve hostname servera.lab.exammple.com: Name or service not known\r
\n",
 "unreachable": true
}
2017-07-11 03:51:56,537 p=3333 u=student | to retry, use: --limit @/home/
student/troubleshooting/samba.retry

2017-07-11 03:51:56,538 p=3333 u=student | PLAY RECAP ************************
2017-07-11 03:51:56,538 p=3333 u=student | servera.lab.exammple.com : ok=0
 changed=0 unreachable=1 failed=0

16. Investigate the inventory file for errors. Notice the [samba_servers] group has
misspelled servera.lab.example.com. Correct it and make the file look like the
following:

... Output omitted ...
[samba_servers]
servera.lab.example.com
... Output omitted ...

17. Run the playbook again. The debug install_state variable task returns the message The state
for the samba service is installed. This task makes use of the debug module, and displays
the value of the install_state variable. An error is also shown in the deliver samba config
task, since no samba.j2 file is available in the working directory, /home/student/
troubleshooting/.

[student@workstation troubleshooting]$ ansible-playbook samba.yml

PLAY [Install a samba server] **
... Output omitted ...
TASK [debug install_state variable] **
ok: [servera.lab.example.com] => {
 "msg": "The state for the samba service is installed"

Chapter 10. Troubleshooting Ansible

350 DO407-A2.3-en-2-20170725

}
... Output omitted ...
TASK [deliver samba config] **
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failed": true,
 "msg": "Unable to find 'samba.j2' in expected paths."}
... Output omitted ...
PLAY RECAP ***
servera.lab.example.com : ok=7 changed=3 unreachable=0 failed=1

18. Edit the playbook, and correct the src parameter in the deliver samba config task to be
samba.conf.j2. When you are finished it should look like the following:

... Output omitted ...
 - name: deliver samba config
 template:
 src: samba.conf.j2
 dest: /etc/samba/smb.conf
 owner: root
... Output omitted ...

19. Run the playbook again. Execute the playbook using the --step option. It should run
without errors.

[student@workstation troubleshooting]$ ansible-playbook samba.yml --step

PLAY [Install a samba server] **
Perform task: TASK: setup (y/n/c): y
... Output omitted ...
Perform task: TASK: install samba (y/n/c): y
... Output omitted ...
Perform task: TASK: install firewalld (y/n/c): y
... Output omitted ...
Perform task: TASK: debug install_state variable (y/n/c): y
... Output omitted ...
Perform task: TASK: start samba (y/n/c): y
... Output omitted ...
Perform task: TASK: start firewalld (y/n/c): y
... Output omitted ...
Perform task: TASK: configure firewall for samba (y/n/c): y
... Output omitted ...
Perform task: TASK: deliver samba config (y/n/c): y
... Output omitted ...
PLAY RECAP ***
servera.lab.example.com : ok=8 changed=1 unreachable=0 failed=0

Troubleshooting Ansible Managed Hosts

DO407-A2.3-en-2-20170725 351

Troubleshooting Ansible Managed Hosts

Objectives
After completing this section, students should be able to:

• Use the ansible-playbook --check command

• Use modules to probe service status on the managed hosts

• Use ad hoc commands to check issues on the managed hosts

Check Mode as a Testing Tool
You can use the ansible-playbook --check command to run smoke tests on a playbook.
This option executes the playbook without making any change to the managed hosts'
configuration. If a module used within the playbook supports check mode the changes that would
be made in the managed hosts are displayed. If that mode is not supported by a module those
changes will not be displayed.

[student@demo ~]# ansible-playbook --check playbook.yml

The ansible-playbook --check command is used when all the tasks included in a playbook
have to be executed in check mode, but if just some of those tasks need to be executed in check
mode, the always_run option is a better solution. Each task can have a always_run clause
associated. The value for this clause is true if the task has to be executed in check mode or false
if it is not. The following task is executed in check mode.

 tasks:
 - name: task in check mode
 shell: uname -a
 always_run: yes

The following task is not executed in check mode.

 tasks:
 - name: task in check mode
 shell: uname -a
 always_run: false

Note
The ansible-playbook --check command may not work properly if tasks make
use of conditionals.

Ansible also provides the --diff option. This option reports the changes done to the template
files on managed hosts. If used with the --check option, those changes are displayed and not
actually made.

[student@demo ~]# ansible-playbook --check --diff playbook.yml

Chapter 10. Troubleshooting Ansible

352 DO407-A2.3-en-2-20170725

Modules for testing
Some modules can provide additional information about what the status of a managed host is.
The following list includes some of the Ansible modules that can be used to test and debug issues
on managed hosts.

• The uri module provides a way to check that a RESTful API is returning the required content.

 tasks:
 - uri:
 url: http://api.myapp.com
 return_content: yes
 register: apiresponse

 - fail:
 msg: 'version was not provided'
 when: "'version' not in apiresponse.content"

• The script module supports the execution of a script on a managed host, failing if the return
code for that script is non-zero. The script must be on the control node and will be transferred
(and executed) on the managed host.

 tasks:
 - script: check_free_memory

• The stat module can check that files and directories not managed directly by Ansible are
present. Check the usage of the assert module in the following example checking that a file
exists in the managed host.

 tasks:
 - stat:
 path: /var/run/app.lock
 register: lock

 - assert:
 that:
 - lock.stat.exists

Using ad hoc commands for testing
The following examples illustrate some of the checks that can be done on a managed host
through the use of ad hoc commands. Those examples use modules such as yum in order to
perform checks on the managed nodes. This example checks that the httpd package is currently
installed in the demohost managed host.

[student@demo ~]# ansible demohost -u devops -b -m yum -a 'name=httpd state=present'

This example returns the currently available space on the disks configured in the demohost
managed host.

[student@demo ~]# ansible demohost -a 'lsblk'

This example returns the currently available free memory on the demohost managed host.

The correct level of testing

DO407-A2.3-en-2-20170725 353

[student@demo ~]# ansible demohost -a 'free -m'

The correct level of testing
Ansible ensures that the configuration included in playbooks and performed by its modules is
correctly done. It monitors all modules for reported failures, and stops the playbook immediately
any failure is encountered. This ensures that any task performed before the failure has no errors.
Because of this, there is no need to check if the result of a task managed by Ansible has been
correctly applied on the managed hosts. It makes sense to add some health checks either to
playbooks, or run those directly as ad hoc commands, when more direct troubleshooting is
required.

References
Check Mode ("Dry Run") -- Ansible Documentation
http://docs.ansible.com/ansible/playbooks_checkmode.html

Testing Strategies -- Ansible Documentation
http://docs.ansible.com/ansible/test_strategies.html

http://docs.ansible.com/ansible/playbooks_checkmode.html
http://docs.ansible.com/ansible/test_strategies.html

Chapter 10. Troubleshooting Ansible

354 DO407-A2.3-en-2-20170725

Guided Exercise: Troubleshooting Ansible
Managed Hosts

In this exercise, the SMTP service is deployed in a managed host. The playbook for
this exercise is the mailrelay.yml playbook that configures an SMTP service on
servera.lab.example.com.

Outcomes

You should be able to:

• Troubleshoot managed hosts.

Before you begin

Log in to workstation as student using student as the password.

On workstation, run the lab troubleshoot-managedhosts setup script. It checks if
Ansible is installed on workstation. It also downloads the inventory, mailrelay.yml,
and postfix-relay-main.conf.j2 files from http://materials.example.com/
troubleshooting/ to the /home/student/troubleshooting/ directory.

[student@workstation ~]$ lab troubleshoot-managedhosts setup

Steps

1. On workstation, change to the /home/student/troubleshooting/ directory.

[student@workstation ~]$ cd ~/troubleshooting/

2. Run the mailrelay.yml playbook using check mode.

[student@workstation troubleshooting]$ ansible-playbook mailrelay.yml --check
PLAY [create mail relay servers] ***
...
TASK [check main.cf file] **
ok: [servera.lab.example.com]

TASK [verify main.cf file exists] **
ok: [servera.lab.example.com] => {
 "msg": "The main.cf file exists"
}
...
TASK [email notification of always_bcc config] *********************************
fatal: [servera.lab.example.com]: FAILED! => {"failed": true, "msg": "The
 conditional check 'bcc_state.stdout != 'always_bcc ='' failed. The error was: error
 while evaluating conditional (bcc_state.stdout != 'always_bcc ='): 'dict object'
 has no attribute 'stdout'\n\nThe error appears to have been in '/home/student/
troubleshooting/mailrelay.yml': line 42, column 7, but may\nbe elsewhere in the file
 depending on the exact syntax problem.\n\nThe offending line appears to be:\n\n\n
 - name: email notification of always_bcc config\n ^ here\n"}
...
PLAY RECAP ***
servera.lab.example.com : ok=6 changed=1 unreachable=0 failed=1

DO407-A2.3-en-2-20170725 355

The verify main.cf file exists task uses the stat module. It confirmed that main.cf exists on
servera.lab.example.com.

The email notification of always_bcc config task failed. It did not receive output from the
check for always_bcc task, because the playbook was executed using check mode.

3. Using an ad hoc command, check the header for the /etc/postfix/main.cf file.

[student@workstation troubleshooting]$ ansible servera.lab.example.com -u devops -b
 -a "head /etc/postfix/main.cf"
servera.lab.example.com | FAILED | rc=1 >>
head: cannot open ‘/etc/postfix/main.cf’ for reading: No such file or directory

The command failed because the playbook was executed using check mode. Postfix is not
installed on servera.lab.example.com

4. Run the playbook again, but without specifying check mode. The error in the email
notification of always_bcc config task should disappear.

[student@workstation troubleshooting]$ ansible-playbook mailrelay.yml
PLAY [create mail relay servers] ***
...
TASK [check for always_bcc] **
changed: [servera.lab.example.com]

TASK [email notification of always_bcc config] *********************************
skipping: [servera.lab.example.com]

RUNNING HANDLER [restart postfix] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=8 changed=3 unreachable=0 failed=0

5. Using an ad hoc command, display the top of the /etc/postfix/main.cf file.

[student@workstation troubleshooting]$ ansible servera.lab.example.com -u devops -b
 -a "head /etc/postfix/main.cf"
servera.lab.example.com | SUCCESS | rc=0 >>
Ansible managed
#
Global Postfix configuration file. This file lists only a subset
of all parameters. For the syntax, and for a complete parameter
list, see the postconf(5) manual page (command: "man 5 postconf").
#
For common configuration examples, see BASIC_CONFIGURATION_README
and STANDARD_CONFIGURATION_README. To find these documents, use
the command "postconf html_directory readme_directory", or go to
http://www.postfix.org/.

Now it starts with a line that contains the string, “Ansible managed”. This file was updated
and is now managed by Ansible.

6. Add a task to enable the smtp service through the firewall.

[student@workstation troubleshooting]$ vim mailrelay.yml

Chapter 10. Troubleshooting Ansible

356 DO407-A2.3-en-2-20170725

...
 - name: postfix firewalld config
 firewalld:
 state: enabled
 permanent: true
 immediate: true
 service: smtp
...

7. Run the playbook. The postfix firewalld config should have been executed with no errors.

[student@workstation troubleshooting]$ ansible-playbook mailrelay.yml
PLAY [create mail relay servers] ***
...
TASK [postfix firewalld config] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=8 changed=2 unreachable=0 failed=0

8. Using an ad hoc command, check that the smtp service is now configured in the firewall at
servera.lab.example.com.

[student@workstation troubleshooting]$ ansible servera.lab.example.com -u devops -b
 -a "firewall-cmd --list-services"
servera.lab.example.com | SUCCESS | rc=0 >>
dhcpv6-client samba smtp ssh

9. Test the SMTP service, listening on port TCP/25, on servera.lab.example.com with
telnet. Disconnect when you are finished.

[student@workstation troubleshooting]$ telnet servera.lab.example.com 25
Trying 172.25.250.10...
Connected to servera.lab.example.com.
Escape character is '^]'.
220 servera.lab.example.com ESMTP Postfix
quit
Connection closed by foreign host.

Lab: Troubleshooting Ansible

DO407-A2.3-en-2-20170725 357

Lab: Troubleshooting Ansible

In this lab, the control node and the managed hosts have errors that need to be corrected. The
secure-web.yml playbook configures Apache with SSL on serverb.lab.example.com.

Outcomes

You should be able to:

• Troubleshoot playbooks.

• Troubleshoot managed hosts.

Before you begin

Log in to workstation as student using student as the password. Run the lab
troubleshoot-lab setup command.

[student@workstation ~]$ lab troubleshoot-lab setup

This script checks if Ansible is installed on workstation, creates the ~student/
troubleshooting-lab/ directory, and the html subdirectory in it. It also downloads from
http://materials.example.com/troubleshooting/ the ansible.cfg, inventory-
lab, secure-web.yml, and vhosts.conf files to the /home/student/troubleshooting-
lab/ directory, and the index.html file to the /home/student/troubleshooting-lab/
html/ directory.

Steps

1. From the ~/troubleshooting-lab directory, run the secure-web.yml playbook. It
uses by default the inventory-lab file configured in the inventory parameter of the
ansible.cfg file. This playbook sets up Apache with SSL. Solve any syntax issues in the
variables definition.

2. Rerun the playbook and solve any issues related to the indentation in the secure-web
playbook.

3. Rerun the playbook and solve any issues related to variable quotation in the secure-web
playbook.

4. Rerun the playbook and solve any issues related to the inventory.

5. Rerun the playbook and solve any issues related to the user used to connect to the managed
hosts.

6. Rerun the playbook and solve any issues related to the ability of the devops user to escalate
the privilege to root.

7. Ensure that the Apache service playbook has been executed successfully on
serverb.lab.example.com. Try to run the playbook first using check mode and check
the state of the httpd service on serverb.lab.example.com using an ad hoc command.
Run the playbook again and recheck the service.

Evaluation

From workstation, run the lab troubleshoot-lab grade script to confirm success on this
exercise.

Chapter 10. Troubleshooting Ansible

358 DO407-A2.3-en-2-20170725

[student@workstation troubleshooting-lab]$ lab troubleshoot-lab grade

Cleanup

From workstation, run the lab troubleshoot-lab cleanup script to clean up this lab.

[student@workstation troubleshooting-lab]$ lab troubleshoot-lab cleanup

Solution

DO407-A2.3-en-2-20170725 359

Solution

In this lab, the control node and the managed hosts have errors that need to be corrected. The
secure-web.yml playbook configures Apache with SSL on serverb.lab.example.com.

Outcomes

You should be able to:

• Troubleshoot playbooks.

• Troubleshoot managed hosts.

Before you begin

Log in to workstation as student using student as the password. Run the lab
troubleshoot-lab setup command.

[student@workstation ~]$ lab troubleshoot-lab setup

This script checks if Ansible is installed on workstation, creates the ~student/
troubleshooting-lab/ directory, and the html subdirectory in it. It also downloads from
http://materials.example.com/troubleshooting/ the ansible.cfg, inventory-
lab, secure-web.yml, and vhosts.conf files to the /home/student/troubleshooting-
lab/ directory, and the index.html file to the /home/student/troubleshooting-lab/
html/ directory.

Steps

1. From the ~/troubleshooting-lab directory, run the secure-web.yml playbook. It
uses by default the inventory-lab file configured in the inventory parameter of the
ansible.cfg file. This playbook sets up Apache with SSL. Solve any syntax issues in the
variables definition.

1.1. On workstation, change to the /home/student/troubleshooting-lab project
directory.

[student@workstation ~]$ cd ~/troubleshooting-lab/

1.2. Run the secure-web playbook, included in the secure-web.yml file. This playbook sets
up Apache with SSL if everything is correct.

[student@workstation troubleshooting-lab]$ ansible-playbook secure-web.yml
ERROR! Syntax Error while loading YAML.
...
The error appears to have been in '/home/student/Ansible-course/troubleshooting-
lab/secure-web.yml': line 7, column 30, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

 vars:
 random_var: This is colon: test
 ^ here

1.3. Correct the syntax issue in the variables definition by adding double quotes to the This
is colon: test string. The resulting change should look like the following:

Chapter 10. Troubleshooting Ansible

360 DO407-A2.3-en-2-20170725

... Output omitted ...
 vars:
 random_var: "This is colon: test"
... Output omitted ...

2. Rerun the playbook and solve any issues related to the indentation in the secure-web
playbook.

2.1. Rerun the secure-web playbook, included in the secure-web.yml file, using the --
syntax-check option.

[student@workstation troubleshooting-lab]$ ansible-playbook secure-web.yml --
syntax-check
ERROR! Syntax Error while loading YAML.

The error appears to have been in '/home/student/Ansible-course/troubleshooting-
lab/secure-web.yml': line 43, column 10, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

 - name: start and enable web services
 ^ here

2.2. Correct any syntax issues in the indentation. Remove the extra space at the beginning
of the start and enable web services task elements. The resulting change should look like
the following:

... Output omitted ...
 - name: start and enable web services
 service:
 name: httpd
 state: started
 enabled: yes
 tags:
 - services
... Output omitted ...

3. Rerun the playbook and solve any issues related to variable quotation in the secure-web
playbook.

3.1. Rerun the secure-web playbook, included in the secure-web.yml file, using the --
syntax-check option.

[student@workstation troubleshooting-lab]$ ansible-playbook secure-web.yml --
syntax-check
ERROR! Syntax Error while loading YAML.

The error appears to have been in '/home/student/Ansible-course/troubleshooting-
lab/secure-web.yml': line 13, column 20, but may
be elsewhere in the file depending on the exact syntax problem.

Solution

DO407-A2.3-en-2-20170725 361

The offending line appears to be:

 yum:
 name: {{ item }}
 ^ here
We could be wrong, but this one looks like it might be an issue with
missing quotes. Always quote template expression brackets when they
start a value. For instance:

 with_items:
 - {{ foo }}

Should be written as:

 with_items:
 - "{{ foo }}"

3.2. Correct the item variable in the install web server packages task. Add double
quotes to {{ item }}. The resulting change should look like the following:

... Output omitted ...
 - name: install web server packages
 yum:
 name: "{{ item }}"
 state: latest
 notify:
 - restart services
 tags:
 - packages
 with_items:
 - httpd
 - mod_ssl
 - crypto-utils
... Output omitted ...

3.3. Rerun the playbook using the --syntax-check option. It should not show any
additional syntax errors.

[student@workstation troubleshooting-lab]$ ansible-playbook secure-web.yml --
syntax-check

playbook: secure-web.yml

4. Rerun the playbook and solve any issues related to the inventory.

4.1. Rerun the secure-web playbook, included in the secure-web.yml file.

[student@workstation troubleshooting-lab]$ ansible-playbook secure-web.yml
PLAY [create secure web service] ***

TASK [Gathering Facts] ***
fatal: [serverb.lab.example.com]: UNREACHABLE! => {"changed": false,
 "msg": "Failed to connect to the host via ssh: Warning: Permanently added
 'tower.lab.example.com,172.25.250.9' (ECDSA) to the list of known hosts.\r
\nPermission denied (publickey,gssapi-keyex,gssapi-with-mic,password).\r\n",
 "unreachable": true}
 to retry, use: --limit @/home/student/troubleshooting-lab/secure-
web.retry

Chapter 10. Troubleshooting Ansible

362 DO407-A2.3-en-2-20170725

PLAY RECAP ***
serverb.lab.example.com : ok=0 changed=0 unreachable=1 failed=0

4.2. Rerun the secure-web playbook again with -vvvv parameter to add verbosity. Notice
that the connection appears to be to tower.lab.example.com, instead of
serverb.lab.example.com.

[student@workstation troubleshooting-lab]$ ansible-playbook secure-web.yml -vvvv
TASK [Gathering Facts] ***
tower.lab.example.com ESTABLISH SSH CONNECTION FOR USER: students
tower.lab.example.com SSH: EXEC ssh -C -vvv -o ControlMaster=auto
 -o ControlPersist=60s -o Port=22 -o KbdInteractiveAuthentication=no
 -o PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey
 -o PasswordAuthentication=no -o User=students -o ConnectTimeout=10
 -o ControlPath=/home/student/.ansible/cp/ansible-ssh-%C -tt
 tower.lab.example.com
 '/bin/sh -c '"'"'(umask 22 && mkdir -p "` echo $HOME/.ansible/tmp/
 ansible- tmp-1460241127.16-3182613343880 `" && echo "` echo $HOME/.ansible/
 tmp/ansible-tmp-1460241127.16-3182613343880 `")'"'"''

4.3. Correct the inventory. Delete the ansible_host host variable so the file looks like the
following:

[webservers]
serverb.lab.example.com

5. Rerun the playbook and solve any issues related to the user used to connect to the managed
hosts.

5.1. Rerun the secure-web playbook, included in the secure-web.yml file.

[student@workstation troubleshooting-lab]$ ansible-playbook secure-web.yml -vvvv
...
TASK [Gathering Facts]
 **
serverb.lab.example.com ESTABLISH SSH CONNECTION FOR USER: students
serverb.lab.example.com EXEC ssh -C -vvv -o ControlMaster=auto
 -o ControlPersist=60s -o Port=22 -o KbdInteractiveAuthentication=no
 -o PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey
 -o PasswordAuthentication=no -o User=students -o ConnectTimeout=10
 -o ControlPath=/home/student/.ansible/cp/ansible-ssh-%C -tt
 serverb.lab.example.com '/bin/sh -c '"'"'(umask 22 && mkdir -p "`
 echo $HOME/.ansible/tmp/ansible-tmp-1460241127.16-3182613343880 `" &&
 echo "` echo $HOME/.ansible/tmp/ansible-tmp-1460241127.16-3182613343880
 `")'"'"''
... Output omitted ...

5.2. Edit the secure-web playbook to specify the devops user. The first lines of the playbook
should look like the following:

start of secure web server playbook
- name: create secure web service
 hosts: webservers
 user: devops

Solution

DO407-A2.3-en-2-20170725 363

... Output omitted ...

6. Rerun the playbook and solve any issues related to the ability of the devops user to escalate
the privilege to root.

6.1. Rerun the secure-web playbook, included in the secure-web.yml file.

[student@workstation troubleshooting-lab]$ ansible-playbook secure-web.yml -vvvv
... Output omitted ...
failed: [serverb.lab.example.com] => (item=[u'httpd', u'mod_ssl',
 u'crypto-utils']) => {"changed": true, "failed": true, "invocation":
 {"module_args": {"conf_file": null, "disable_gpg_check": false, "disablerepo":
 null, "enablerepo": null, "exclude": null, "install_repoquery": true,
 "list": null, "name": ["httpd", "mod_ssl", "crypto-utils"], "state": "latest",
 "update_cache": false}, "module_name": "yum"}, "item": ["httpd", "mod_ssl",
 "crypto-utils"], "msg": "You need to be root to perform this command.\n",
 "rc": 1, "results": ["Loaded plugins: langpacks, search-disabled-repos\n"]}
... Output omitted ...

6.2. Edit the playbook to include the become parameter. The resulting change should look
like the following:

start of secure web server playbook
- name: create secure web service
 hosts: webservers
 user: devops
 become: true
... Output omitted ...

7. Ensure that the Apache service playbook has been executed successfully on
serverb.lab.example.com. Try to run the playbook first using check mode and check
the state of the httpd service on serverb.lab.example.com using an ad hoc command.
Run the playbook again and recheck the service.

7.1. Rerun the secure-web.yml playbook in check mode. The install web server
packages task reflects the changes that would be done. The httpd_conf_syntax
variable task shows the current value for the httpd_conf_syntax variable.

[student@workstation troubleshooting-lab]$ ansible-playbook secure-web.yml --
check
PLAY [create secure web service] ***
...
TASK [install web server packages] ***
changed: [serverb.lab.example.com] => (item=[u'httpd', u'mod_ssl', u'crypto-
utils'])
...
TASK [httpd_conf_syntax variable] **
ok: [serverb.lab.example.com] => {
 "msg": "The httpd_conf_syntax variable value is {u'msg': u'remote module
 does not support check mode', u'skipped': True, u'changed': False}"
}
...
RUNNING HANDLER [restart services] ***
changed: [serverb.lab.example.com]
...
PLAY RECAP ***

Chapter 10. Troubleshooting Ansible

364 DO407-A2.3-en-2-20170725

serverb.lab.example.com : ok=6 changed=5 unreachable=0 failed=0

7.2. Using an ad hoc command, check the state of the httpd service in
serverb.lab.example.com. The httpd service is not installed in
serverb.lab.example.com.

[student@workstation troubleshooting-lab]$ ansible all -u devops -b -a
 'systemctl status httpd'
serverb.lab.example.com | FAILED | rc=4 >>
Unit httpd.service could not be found.

7.3. Rerun the secure-web playbook, included in the secure-web.yml file.

[student@workstation troubleshooting-lab]$ ansible-playbook secure-web.yml
PLAY [create secure web service] ***
...
TASK [install web server packages] ***
changed: [serverb.lab.example.com] => (item=[u'httpd', u'mod_ssl', u'crypto-
utils'])
...
TASK [httpd_conf_syntax variable] **
ok: [serverb.lab.example.com] => {
 "msg": "The httpd_conf_syntax variable value is {u'changed': True, u'end':
 u'2016-05-03 19:43:37.612170', u'stdout': u'', u'cmd': [u'/sbin/httpd', u'-t'],
 'failed': False, u'delta': u'0:00:00.033463', u'stderr': u'Syntax OK', u'rc':
 0, 'stdout_lines': [], 'failed_when_result': False, u'start': u'2016-05-03
 19:43:37.578707', u'warnings': []}"
}
...
RUNNING HANDLER [restart services] ***
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=10 changed=7 unreachable=0 failed=0

7.4. Using an ad hoc command, check the state of the httpd service in
serverb.lab.example.com. The httpd service should be now running in
serverb.lab.example.com.

[student@workstation troubleshooting-lab]$ ansible all -u devops -b -a
 'systemctl status httpd'
serverb.lab.example.com | SUCCESS | rc=0 >>
● httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor
 preset: disabled)
 Active: active (running) since Tue 2016-05-03 19:43:39 CEST; 12s ago
... Output omitted ...

Evaluation

From workstation, run the lab troubleshoot-lab grade script to confirm success on this
exercise.

[student@workstation troubleshooting-lab]$ lab troubleshoot-lab grade

Solution

DO407-A2.3-en-2-20170725 365

Cleanup

From workstation, run the lab troubleshoot-lab cleanup script to clean up this lab.

[student@workstation troubleshooting-lab]$ lab troubleshoot-lab cleanup

Chapter 10. Troubleshooting Ansible

366 DO407-A2.3-en-2-20170725

Summary

In this chapter, you learned:

• Ansible provides built-in logging. This feature is not enabled by default.

• The log_path parameter in the default section of the ansible.cfg configuration file
specifies the location of the log file to which all Ansible output is redirected.

• The debug module provides additional debugging information while running a playbook (for
example, current value for a variable).

• The -v option of the ansible-playbook command provides several levels of output
verbosity. This is useful for debugging Ansible tasks when running a playbook.

• The --check option enables Ansible modules with check mode support to display changes to
be performed, instead of applying those changes to the managed hosts.

• Additional checks can be executed on the managed hosts using ad hoc commands.

• There is no need to double-check the configuration performed by Ansible as long as the
playbook completes successfully.

DO407-A2.3-en-2-20170725 367

TRAINING

CHAPTER 11

IMPLEMENTING ANSIBLE
TOWER

Overview

Goal Explain what Ansible Tower is and demonstrate a basic
ability to navigate and use its web user interface.

Objectives • Describe the architecture, use cases, and installation
requirements of Ansible Tower.

• Install a new Ansible Tower on a single node using the
setup.sh script.

• Navigate and describe the Ansible Tower web user
interface, and successfully launch a job using the demo job
template, project, credential, and inventory.

Sections • Introduction to Ansible Tower (and Quiz)

• Installing Ansible Tower (and Guided Exercise)

• Navigating the Ansible Tower Web Interface (and Guided
Exercise)

Quiz • Architecture and Installation of Ansible Tower

Chapter 11. Implementing Ansible Tower

368 DO407-A2.3-en-2-20170725

Introduction to Ansible Tower

Objectives
After completing this section, students should be able to describe the architecture, use cases,
and installation requirements of Ansible Tower.

Why Ansible Tower?
As an enterprise's experience with Ansible matures, it often finds additional opportunities for
leveraging Ansible to simplify and improve IT operations. The same Ansible playbooks utilized
by operations teams to deploy production systems can also be used to deploy identical systems
in earlier stages of the software development lifecycle. When automated with Ansible, complex
production support tasks typically handled by skilled engineers can easily be delegated to and
resolved by entry-level technicians.

However, sharing an existing Ansible infrastructure to scale IT automation across an enterprise
can present some challenges. While properly written Ansible playbooks can be leveraged across
teams, Ansible does not provide any facilities for managing their shared access. Additionally,
though playbooks may allow for the delegation of complex tasks, their execution may require
highly privileged and guarded administrator credentials.

IT teams often vary in their preferred tool sets. While some may prefer the direct execution
of playbooks, other teams may wish to trigger playbook execution from existing continuous
integration and delivery tool suites. In addition, those that traditionally work with GUI-based tools
may find Ansible's pure command-line interface intimidating and awkward.

Ansible Tower overcomes many of these problems by providing a framework for running and
managing Ansible efficiently on an enterprise scale. Tower eases the administration involved
with sharing an Ansible infrastructure while maintaining organization security by introducing
features such as a centralized web interface for playbook management, role-based access control
(RBAC), and centralized logging and auditing. Its REST API ensures that Tower integrates easily
with an enterprise's existing workflows and tool sets. Tower's API and notification features make
it particularly easy to associate Ansible playbooks with other tools such as Jenkins, CloudForms,
or Red Hat Satellite, to enable continuous integration and deployment. It provides mechanisms
to enable centralized use and control of machine credentials and other secrets without exposing
them to end users of Ansible Tower.

Ansible Tower Architecture
Ansible Tower is a Django web application designed to run on a Linux server as an on-premise,
self-hosted solution which layers on top of an enterprise's existing Ansible infrastructure.

Ansible Tower Architecture

DO407-A2.3-en-2-20170725 369

Figure 11.1: Ansible Tower architecture

Users interface with their enterprise's underlying Ansible infrastructure through either Tower's
web interface or its RESTful API. Tower's web interface is a graphical interface wrapper which
performs its actions by executing calls against the Tower API. Any action available through the
Tower web interface can therefore also be performed through Tower's RESTful API. The RESTful
API is essential for those users looking to integrate Ansible with existing software tools and
processes.

Tower stores its data in a PostgreSQL back-end database and makes use of the RabbitMQ
messaging system. Versions of Ansible Tower prior to version 3.0 also relied on a MongoDB
database. This dependency has since been removed and data is now stored solely in a
PostgreSQL database.

Depending on an enterprise's needs, Ansible Tower can be implemented using one of the
following architectures.

Single Machine with Integrated Database

All Tower components, the web front end, RESTful API back end, and PostgreSQL database,
reside on a single machine. This is the standard architecture.

Single Machine with Remote Database

Tower web front end and RESTful API back end are installed on a single machine while the
PostgreSQL database is installed remotely on another server on the same network. The
remote database can be hosted on a server with an existing PostgreSQL instance outside the
management of Tower. Another option is to have the Tower installer create a Tower-managed
PostgreSQL instance on the remote server and populate it with the Tower database.

Chapter 11. Implementing Ansible Tower

370 DO407-A2.3-en-2-20170725

High Availability Multi-Machine Cluster

Older Tower versions offered a redundant, active-passive Tower architecture consisting of a
single active node and one or more inactive nodes. Starting with Tower 3.1, this architecture is
now replaced by an active-active, high-availability cluster consisting of multiple active tower
nodes.

Each node in the cluster hosts the Tower web front end and RESTful API back end, and can
receive and process requests. In this cluster architecture, the PostgreSQL database is hosted on
a remote server. The remote database can reside either on a server with an existing PostgreSQL
instance outside the management of Tower or on a server with a Tower-managed PostgreSQL
instance created by the Tower installer.

Note
This course focuses on the most straightforward architecture to deploy, a single
Ansible Tower server with an integrated database.

Ansible Tower features
Two types of license are available for Ansible Tower: basic and enterprise. Enterprise license
offers access to all Tower features. Basic license offers access to only a subset of Tower's
features and does not include many enterprise-level options, such as system tracking, logging
aggregation, and clustering.

The following are just some of the many features offered by Ansible Tower for controlling,
securing, and managing Ansible in an enterprise environment.

Visual Dashboard

The Tower web interface opens into a dashboard screen which provides a summary view of an
enterprise's entire Ansible environment. The Tower Dashboard allows administrators to easily see
the current status of hosts and inventories, as well as the results of recent job executions.

Role-based Access Control (RBAC)

Tower utilizes a Role-Based Access Control (RBAC) system which maintains security while
streamlining user access management. It simplifies the delegation of user access to Tower
objects such as Organizations, Projects, and Inventories.

Graphical Inventory Management

Tower offers users the ability to create inventory groups and add inventory hosts through its web
interface. Inventories can also be updated from an external inventory source such as from public
cloud providers, local virtualization environments, and an organization's custom configuration
management database (CMDB).

Job Scheduling

Tower offers users the ability to schedule playbook execution and updates from external data
sources either on a one-time basis or to be repeated at regular intervals. This allows routine
tasks to be performed unattended and is especially useful for tasks such as backup routines
which should ideally be executed during operational off-hours.

Real-Time and Historical Job Status Reporting

When playbook executions are initiated in Tower, the web interface displays the playbook's
output and execution results in real time. Results of previously executed jobs and scheduled job
runs are also made available by Tower.

Ansible Tower features

DO407-A2.3-en-2-20170725 371

Push-Button Automation

Ansible simplifies IT automation while Tower takes it a step further by enabling user self-
service. Tower's streamlined web interface, coupled with the flexibility of its RBAC system, allows
administrators to safely delegate complex tasks as single click-of-a-button routines.

Remote Command Execution

Tower makes the on-demand flexibility of Ansible's ad-hoc commands available through its
remote command execution feature. User permissions for remote command execution is
enforced using Tower's RBAC system.

Credential Management

Tower centrally manages the credentials which are used for authentication purposes: to do
things like running Ansible plays on managed hosts, synchronizing information from dynamic
inventory sources, and importing Ansible project content from version control systems. It
encrypts the passwords or keys provided so that they can not be retrievable by Tower users.
Users can be granted the ability to use or replace these credentials without actually exposing
them to the user.

Centralized Logging and Auditing

All playbook and remote command executions initiated on Tower are logged. This provides the
ability to audit when each job was executed and by whom. In addition, Tower offers the ability
to integrate its log data into third party logging aggregation solutions, such as Splunk and
Sumologic.

Integrated Notifications

Tower Notifications can be used to signal when Tower job executions succeed or fail.
Notifications can be delivered using many different protocols, including email, Slack, and
HipChat.

Multi-Playbook Workflows

Complex operations often involve the serial execution of multiple playbooks. Tower's multi-
playbook workflows allow users to chain together multiple playbooks to facilitate the execution
of complex routines involving provisioning, configuration, deployment, and orchestration. An
intuitive workflow editor also helps to simplify the modeling of multi-playbook workflows.

System Tracking

Tower can be configured to routinely scan managed hosts and record their states. The collected
data can be used to audit system changes over time. Additionally, this feature can be used to
compare and detect differences between systems.

RESTful API

Tower's RESTful API exposes every Tower feature available through Tower's web interface.
The API's browsable format makes it self-documenting and simplifies lookup of API usage
information.

References
Ansible Tower Administration Guide for Ansible Tower 3.1.1

http://docs.ansible.com/ansible-tower/3.1.1/html/administration

http://docs.ansible.com/ansible-tower/3.1.1/html/administration

Chapter 11. Implementing Ansible Tower

372 DO407-A2.3-en-2-20170725

Quiz: Introduction to Ansible Tower

Choose the correct answer(s) to the following questions:

1. Which of the following three features are provided by Ansible Tower? (Choose three.)

a. Role-based access control
b. Playbook creator wizard
c. Centralized logging
d. RESTful API

2. Which of the following two enhancements are additions to Ansible provided by Ansible
Tower? (Choose two.)

a. Playbook development
b. Remote execution
c. Multi-play workflows
d. Monitoring
e. Version Control
f. Graphical inventory management

3. Which of the following three architectures are supported by the Tower installer? (Choose
three.)

a. Single machine with integrated database
b. Single machine with an external database hosted on a separate server on the

network.
c. High-availability, multi-machine cluster with an external database
d. Active/passive redundancy multi-machine with an external database

4. Which of the following two features are not provided by a basic Ansible Tower license?
(Choose two.)

a. Tower dashboard
b. Job scheduling
c. System tracking
d. Role-based access control
e. Logging aggregation

Solution

DO407-A2.3-en-2-20170725 373

Solution

Choose the correct answer(s) to the following questions:

1. Which of the following three features are provided by Ansible Tower? (Choose three.)

a. Role-based access control
b. Playbook creator wizard
c. Centralized logging
d. RESTful API

2. Which of the following two enhancements are additions to Ansible provided by Ansible
Tower? (Choose two.)

a. Playbook development
b. Remote execution
c. Multi-play workflows
d. Monitoring
e. Version Control
f. Graphical inventory management

3. Which of the following three architectures are supported by the Tower installer? (Choose
three.)

a. Single machine with integrated database
b. Single machine with an external database hosted on a separate server on the

network.
c. High-availability, multi-machine cluster with an external database
d. Active/passive redundancy multi-machine with an external database

4. Which of the following two features are not provided by a basic Ansible Tower license?
(Choose two.)

a. Tower dashboard
b. Job scheduling
c. System tracking
d. Role-based access control
e. Logging aggregation

Chapter 11. Implementing Ansible Tower

374 DO407-A2.3-en-2-20170725

Installing Ansible Tower

Objectives
After completing this section, students should be able to install a new Ansible Tower on a single
node using the setup.sh script.

Installation Requirements
Ansible Tower can be installed and is supported on 64-bit x86_64 versions of Red Hat Enterprise
Linux 7, CentOS 7, Ubuntu 14.04 LTS, and Ubuntu 16.04 LTS. The following are the requirements
for installing Ansible Tower on a Red Hat Enterprise Linux 7 system. Details may vary slightly for
other supported operating systems.

Operating System

For Red Hat Enterprise Linux installations, the Ansible Tower 3.1 server is supported on systems
running Red Hat Enterprise Linux 7.2 or later on the 64-bit x86_64 processor architecture.

Web Browser

A currently supported version of Mozilla Firefox or Google Chrome is required for connecting to
the Ansible Tower web interface. Other HTML5-compliant web browsers may work but are not
fully tested or supported.

Memory

A minimum of 2 GB of RAM is required on the Tower host. 4 GB or more is recommended.

The actual memory requirement is dependent upon the maximum number of hosts Ansible Tower
is expected to configure in parallel. This is managed by the forks configuration parameter in the
job template or system configuration. Red Hat recommends that 4 GB of memory be available for
each 100 forks. A deeper discussion on Ansible Tower memory requirements and how they are
influenced by job concurrency settings can be found in the Ansible Tower User Guide, in the "Job
Concurrency" section of the "Jobs" chapter, at http://docs.ansible.com.

Disk Storage

At least 20 GB of hard disk space is required for Ansible Tower. In order for the Ansible Tower
installation to succeed, 10 GB of this space must be available for the /var directory.

This minimum disk storage requirement does not include storage required for Tower's System
Tracking feature. If this feature is enabled, calculate additional storage requirement based on
the number of hosts tracked, scans performed, and the amount of data collected. A formula to
estimate this is available in the "Requirements" chapter of the Ansible Tower Installation and
Reference Guide.

Ansible

Installation of Ansible Tower is performed by executing a shell script that runs an Ansible
playbook. Older versions of Ansible Tower required that the latest stable version of Ansible was
installed prior to installation, but the current installation program will automatically attempt to
install Ansible and its dependencies if they are not already present.

Red Hat Enterprise Linux 7 users must enable the extras repository.

If the RPM package for Ansible (or DEB for Ubuntu) is already installed on the system, the Tower
installer will not attempt to reinstall it. If you have installed Ansible on the server using the

http://docs.ansible.com

Ansible Tower Licensing and Support

DO407-A2.3-en-2-20170725 375

Python package manager pip, the Tower installer will attempt to reinstall Ansible. For Tower to
work correctly, the latest stable version of Ansible should be installed using your distribution's
package manager.

SELinux

Ansible Tower supports the targeted SELinux policy, which can be set to enforcing mode,
permissive, or disabled. Other SELinux policies are not supported.

Managed clients

The installation requirements above apply to the Ansible Tower server, not to the machines
it manages with Ansible. Those systems should meet the usual requirements for machines
managed with the version of Ansible installed on the Ansible Tower server.

Ansible Tower Licensing and Support
Administrators interested in evaluating Ansible Tower can obtain a trial license at no cost.
Instructions on how to get started are available at https://www.ansible.com/tower-trial.

Administrators interested in progressing beyond trial licensing can choose from three types of
Tower subscriptions:

• Self-Support

Targeted at small deployments, this includes a basic Tower subscription, with maintenance
and upgrades of the software but no technical support or service level agreement (SLA). Some
"enterprise" features of Tower are not included. Versions supporting up to 250 managed
nodes are available, larger deployments should look at the Enterprise subscriptions.

• Enterprise: Standard

The Enterprise: Standard edition includes an enterprise Tower subscription with entitlement
to all Tower features and 8x5 technical support. Pricing is based on the number of nodes
managed. Ansible Playbook support is included, which at the time of writing includes help
with runtime execution problems in Tower, assistance with errors and tracebacks, and limited
recommended practice guidance on the current or previous minor release of Ansible.

• Enterprise: Premium

The Enterprise: Premium edition also includes an enterprise Tower subscription with software
maintenance and upgrades and all Tower features, but with entitlement to 24x7 technical
support. Pricing is based on the number of nodes managed, and Ansible Playbook support is
included.

Detailed information on Ansible Tower pricing and support is available at http://www.ansible.com.

Licenses for Tower Components

Tower makes use of various software components, some of which may be open source. Licenses
for each of these specific components are provided under the /usr/share/doc/ansible-
tower directory.

Ansible Tower Installers
Two different installation packages are available for Ansible Tower.

The standard setup Ansible Tower installation program can be downloaded from http://
releases.ansible.com/ansible-tower/setup/. The latest version of Ansible Tower for

https://www.ansible.com/tower-trial
http://www.ansible.com

Chapter 11. Implementing Ansible Tower

376 DO407-A2.3-en-2-20170725

RHEL 7 is always be located at http://releases.ansible.com/ansible-tower/setup/
ansible-tower-setup-latest.el7.tar.gz. This archive is smaller, but requires Internet
connectivity to download Ansible Tower packages from various package repositories.

A different, bundled installer for RHEL 7 is available at http://releases.ansible.com/
ansible-tower/setup-bundle/ansible-tower-setup-bundle-latest.el7.tar.gz.
This archive includes an initial set of RPM packages for Ansible Tower so that it may be installed
on systems disconnected from the Internet. Those systems still need to be able to get software
packages for Red Hat Enterprise Linux 7 and the RHEL 7 Extras channel from reachable sources.
This may be preferred by administrators in higher security environments. This installation
method is not currently available for Ubuntu.

Installing Tower
The following is the procedure for using the bundled installer to install Ansible Tower on a single
RHEL 7.3 system with access to the Red Hat Enterprise Linux 7 Extras repository. The exercise
after this section will go over this in more detail.

1. As the root user, download the Ansible Tower setup bundle to the system.

2. Extract the Tower setup bundle and change into the directory containing the extracted
contents.

[root@towerhost ~]# tar xzf ansible-tower-setup-bundle-3.1.1-1.el7.tar.gz
[root@towerhost ~]# cd ansible-tower-setup-bundle-3.1.1-1.el7

3. In that directory, the inventory file needs to be edited in order to set passwords for the
Ansible Tower admin account (admin_password), the PostgreSQL database user account
(pg_password), and the RabbitMQ messaging user account (rabbitmq_password).

[tower]
localhost ansible_connection=local

[database]

[all:vars]
admin_password='myadminpassword'

pg_host=''
pg_port=''

pg_database='awx'
pg_username='awx'
pg_password='somedatabasepassword'

rabbitmq_port=5672
rabbitmq_vhost=tower
rabbitmq_username=tower
rabbitmq_password='and-a-messaging-password'
rabbitmq_cookie=cookiemonster

Needs to be true for fqdns and ip addresses
rabbitmq_use_long_name=false

Installing Tower

DO407-A2.3-en-2-20170725 377

Warning
These passwords can be anything and should be set to something secure. The
admin user has full control of the Tower server, and the ports for PostgreSQL and
the RabbitMQ service are exposed to external hosts by default.

4. Run the Ansible Tower installer by executing the setup.sh script.

[root@towerhost ansible-tower-setup-bundle-3.1.1-1.el7]# ./setup.sh
[warn] Will install bundled Ansible
Loaded plugins: langpacks, search-disabled-repos
Examining bundle/repos/epel/ansible-2.2.1.0-1.el7.noarch.rpm:
 ansible-2.2.1.0-1.el7.noarch
Marking bundle/repos/epel/ansible-2.2.1.0-1.el7.noarch.rpm to be installed
... Output omitted ...
The setup process completed successfully.
Setup log saved to /var/log/tower/setup-2017-02-27-10:52:44.log

5. Once the installer has completed successfully, connect to the Ansible Tower system using a
web browser. You should be redirected to an HTTPS login page.

The web browser may generate a warning regarding a self-signed HTTPS certificate
presented by the Ansible Tower website. Replacing the default self-signed HTTPS certificate
for the Ansible Tower web interface with a properly CA-signed certificate is discussed later in
this course.

6. Log in to the Ansible Tower web interface as the Tower administrator using the admin
account and the password you set in the installer's inventory file.

7. Once successfully logged into the Tower web interface for the first time, you are prompted to
enter a license and accept the end user license agreement. Enter the Ansible Tower license
provided by Red Hat and accept the end user license agreement.

At this point, the admin user is presented with the Tower dashboard. The next section provides
an orientation to the Tower interface in more detail.

Chapter 11. Implementing Ansible Tower

378 DO407-A2.3-en-2-20170725

References
Ansible Tower Quick Installation Guide for Ansible Tower 3.1.1

http://docs.ansible.com/ansible-tower/3.1.1/html/quickinstall/

Ansible Tower Installation and Reference Guide for Ansible Tower 3.1.1
http://docs.ansible.com/ansible-tower/3.1.1/html/installandreference/

Ansible Tower User Guide for Ansible Tower 3.1.1
http://docs.ansible.com/ansible-tower/3.1.1/html/userguide/

Ansible Tower Administration Guide for Ansible Tower 3.1.1
http://docs.ansible.com/ansible-tower/3.1.1/html/administration/

http://docs.ansible.com/ansible-tower/3.1.1/html/quickinstall/
http://docs.ansible.com/ansible-tower/3.1.1/html/installandreference/
http://docs.ansible.com/ansible-tower/3.1.1/html/userguide/
http://docs.ansible.com/ansible-tower/3.1.1/html/administration/

Guided Exercise: Installing Ansible Tower

DO407-A2.3-en-2-20170725 379

Guided Exercise: Installing Ansible Tower

In this exercise, you will install a single-node Ansible Tower instance on tower.

Outcomes

You should be able to successfully install Ansible Tower and its license, resulting in a running
Ansible Tower server.

Before you begin

Run lab tower-install setup on workstation to configure tower.lab.example.com
with a Yum repository containing package dependencies from the Red Hat Enterprise Linux and
Extras repositories required for Ansible Tower installation.

[student@workstation ~]$ lab tower-install setup

Steps

1. Download the Ansible Tower setup bundle to the tower system.

1.1. Log in to the tower system as the root user.

[student@workstation ~]$ ssh root@tower

1.2. Download the Ansible Tower setup bundle using the curl command.

[root@tower ~]# curl -O -J http://content.example.com/ansible2.3/x86_64/dvd/
ansible-tower/ansible-tower-setup-bundle-3.1.1-1.el7.tar.gz

2. Extract the Tower setup bundle. Change into the directory containing the extracted contents.

[root@tower ~]# tar xzf ansible-tower-setup-bundle-3.1.1-1.el7.tar.gz
[root@tower ~]# cd ansible-tower-setup-bundle-3.1.1-1.el7

3. Set the passwords for the Ansible Tower administrator account, database user account, and
messaging user account to redhat by modifying their respective entries in the inventory
file used by the Tower installer playbook.

[root@tower ansible-tower-setup-bundle-3.1.1-1.el7]# grep password inventory
admin_password='redhat'
pg_password='redhat'
rabbitmq_password='redhat'

4. Run the Ansible Tower installer by executing the setup.sh script. The script may take
up to 30 minutes to complete. Ignore the errors in the script output as they are related to
verification checks performed by the installer playbook.

[root@tower ansible-tower-setup-bundle-3.1.1-1.el7]# ./setup.sh
[warn] Will install bundled Ansible
Loaded plugins: langpacks, search-disabled-repos

Chapter 11. Implementing Ansible Tower

380 DO407-A2.3-en-2-20170725

Examining bundle/repos/epel/ansible-2.2.1.0-1.el7.noarch.rpm:
 ansible-2.2.1.0-1.el7.noarch
Marking bundle/repos/epel/ansible-2.2.1.0-1.el7.noarch.rpm to be installed
... Output omitted ...
The setup process completed successfully.
Setup log saved to /var/log/tower/setup-2017-02-27-10:52:44.log

5. Once the installer has completed successfully, exit the console session on the tower system.

[root@tower ansible-tower-setup-bundle-3.1.1-1.el7]# exit

6. Launch the Firefox web browser from workstation and connect to your Ansible Tower at
https://tower.lab.example.com. Firefox warns you that the Ansible Tower server's
security certificate is not secure. Add and confirm the security exception for the self-signed
certificate.

7. Log in to the Tower web interface as the Tower administrator using the admin account and
the redhat password.

8. Once you have successfully logged in to the Tower web interface for the first time, you are
prompted to enter a license and accept the end user license agreement.

Upload the Ansible Tower license and accept the end user license agreement.

8.1. On workstation, download the Ansible Tower license provided at http://
materials.example.com/Ansible-Tower-license.txt.

8.2. In the Tower web interface, click BROWSE and then select the license file downloaded
earlier.

8.3. Select the checkbox next to I agree to the End User License Agreement to indicate
acceptance.

8.4. Click SUBMIT to submit the license and accept the license agreement.

Navigating the Ansible Tower Web Interface

DO407-A2.3-en-2-20170725 381

Navigating the Ansible Tower Web Interface

Objectives
After completing this section, students should be able to navigate and describe the Ansible
Tower web user interface, and successfully launch a job using the demo job template, project,
credential, and inventory.

Using Ansible Tower
This section provides an overview of how to use the Ansible Tower web interface to launch a job
with an example Ansible playbook, an inventory, and some access credentials for the machines in
the inventory. Along the way, it provides an orientation to the web interface itself.

The basic idea is that Tower is configured with a number of Ansible projects that contain
playbooks. It is also configured with a number of Ansible inventories and the necessary machine
credentials to log in to inventory hosts and escalate privileges. A job template is set up by an
administrator which specifies which playbook from which project should be run on the hosts in
a particular inventory using particular machine credentials. A job happens when a user runs a
playbook on an inventory by launching a job template.

Tower Dashboard
Upon successful login to the Tower web interface, users are presented with the Tower Dashboard,
the main control center for Ansible Tower.

Figure 11.2: Tower Dashboard

This dashboard screen is composed of four reporting sections:

Summary

Across the top of the dashboard is a summary report of the status of managed hosts,
inventories, and Ansible projects. Clicking on a cell in the summary section takes the user to the
detailed dashboard screen for the reported metric.

Chapter 11. Implementing Ansible Tower

382 DO407-A2.3-en-2-20170725

Job Status

A job is an attempted run of a playbook by Ansible Tower. This section provides a graphical
display of the number of successful and failed jobs over time. This graph can be adjusted in
several ways:

• The PERIOD dropdown menu can be used to change the time window for the plotted graph
between either the most recent day, week, or month.

• The JOB TYPE dropdown menu can be used to select which job types to include on the graph.

• The VIEW drop-down menu can be used to choose between graphing all job status, only failed
job, or only successful jobs.

Recently Used Templates

This section reports a listing of job templates which was recently used for the execution of jobs.

• For each job template used, the results of each associated job run is indicated under the
ACTIVITY column by a colored dot, with green indicating success and red indicating failure.

• Under the ACTIONS column are controls for the use and modification of the job template.

• Clicking the VIEW ALL link displays all job templates, not just the ones which have recently
been used for job execution.

Recent Job Runs

This section provides a listing of recently executed jobs along with their date and time of
execution. Each job run listed is preceded by a colored dot which represents the outcome of the
run. A green dot represents a successful run while a red dot represents a failed run.

Quick Navigation Links
In the upper left portion of the Tower web interface is a collection of navigation links to
commonly used Tower resources. The Ansible Tower icon links users back to the Tower
Dashboard page. The Projects, Inventories, Templates, and Jobs links direct to the administrative
screen for each of these four Tower resources.

Figure 11.3: Quick navigation links

• Projects: In Tower, a project represents a collection of related Ansible playbooks.

• Inventories: As in Ansible, inventories in Ansible Tower contain a collection of hosts to be
managed.

• Templates: The template resource defines the parameters which are to be used for the
execution of an Ansible playbook by Ansible Tower.

• Jobs: A job represents Tower's execution of an Ansible playbook against an inventory of hosts.

Administration Tool Links
Across the upper-right portion of the Tower web interface are links to various Tower
administration tools.

Tower Settings

DO407-A2.3-en-2-20170725 383

Figure 11.4: Administration tool links

Account configuration

The current user account name is displayed as a link. Clicking the link directs users to their
account configuration page, where they can modify their username, password, or account user
type.

Settings

The gear icon links users to the Settings menu. This menu provides access to administrative
interfaces for various Tower resources.

My View

To the right of the Settings icon is a report icon, which links to Tower's My View screen. This
screen reports on the same information as the Tower Dashboard but only for the jobs executed
by the logged in user.

View Documentation

The book icon to the right of the My View represents the View Documentation link. Clicking on
this link opens the online Ansible Tower documentation web site in a new window.

Log Out

The power icon link to the right of the View Documentation icon is used to log out of the Tower
web interface.

Tower Settings
As previously mentioned Tower's Settings menu can be accessed by clicking the Settings icon
in the administration toolbar. The Settings menu provides access to the following management
interfaces for Tower resources which are not accessible through the quick navigation links.

Figure 11.5: Settings

Organizations

This interface is used for managing organization entities within Tower. An organization
represents a logical collection of other Tower resources, such as Teams, Projects, and Inventories.

Chapter 11. Implementing Ansible Tower

384 DO407-A2.3-en-2-20170725

Organizations are often used for departmental separation within an enterprise. An organization
is the highest level at which Tower's role-based access control system can be applied.

Users

This interface allows for Tower user management. Users are granted access to Tower and then
assigned roles which determine their access to Tower resources.

Teams

Tower Teams can be administered through this interface. Teams represent a group of Users. Like
Users, teams can also be assigned roles for access to Tower resources.

Credentials

The management of Credentials is performed through this interface. Credentials are
authentication data used by Tower to do such things as logging in to managed hosts to run plays,
synchronizing inventory data from external sources, and downloading updated project materials
from version control systems.

Management Jobs

This interface is used to administer system jobs which perform cleanup of metrics and activity
information stored by Tower operations.

Inventory Scripts

This interface manages scripts used for the generation and update of dynamic inventories from
external sources, such as cloud providers and configuration management databases (CMDBs)

Notifications

Administration of Notification Templates is conducted through this interface. These templates
define the set of configuration parameters needed to generate notifications using a variety of
message delivery tools, such as email, IRC, and HipChat.

View Your License

This interface provides details of the installed license and can also be used to perform
administrative licensing tasks such as license installation and upgrade.

Configure Tower

Configurable options related to authentication, job execution, and the Tower web interface are
performed through this interface.

About Tower

Information regarding the version of Tower installed can be displayed using this link.

General Controls
In addition to the navigational and administrative controls previously outlined, some additional
controls are used throughout the Tower web interface.

Configuration of a Job Template

DO407-A2.3-en-2-20170725 385

Figure 11.6: Key

Breadcrumb Navigation Links

As a user navigates through the Tower web interface, a set of breadcrumb navigation links is
created just below the quick navigation links in the upper left corner of the screen. This series of
links not only make clear the path which leads to each screen but also provides a quick way to
return to a previous screens in the navigated path.

Activity Streams

On most screens in the Tower web interface, there is a View Activity Stream link under the
Administrative Tools links at the top right portion. This link can be used to produce a page
reporting activities which have occurred and are related to the screen that the button is
clicked on. For example, when the Activity Streams button is clicked on the Projects screen, the
information regarding the time, executor, and the nature of project-related activities is displayed.

Search Fields

Throughout the Tower web interface are search fields which can be used to search or filter
through data sets. Each search field accepts search criteria which can be used to narrow down
the search result.

Key

A guide detailing the correct syntax of the specific criteria for each search field can be displayed
by clicking the Key button located next to the search field.

The Key button is also used to define the options provided by other input fields within Tower
such as dropdown lists.

Configuration of a Job Template
When installed, Ansible Tower is preconfigured with a demonstration Job Template which can be
used as an example to see how a Job Template is constructed and to test the operation of the
Tower. The following discussion looks at the components that make up this example. The exercise
that follows this section will provide a more detailed hands-on walk through.

1. Under INVENTORIES, a Demo Inventory has been configured. This is a static inventory with
no hostgroups and one host, localhost. Clicking on that host in the inventory reveals that
it has the inventory variable ansible_connection: local set.

Chapter 11. Implementing Ansible Tower

386 DO407-A2.3-en-2-20170725

Figure 11.7: Demo Inventory

2. Under Settings (the gear icon), there is a CREDENTIALS link. A machine credential named
Demo Credential has been created which contains information that could be used to
authenticate access to machines in an inventory.

3. Under PROJECTS, a Demo Project has been configured. This Project is configured to get
Ansible project materials, including playbooks, from a local directory on the Tower system.

Figure 11.8: Demo Project

4. Under TEMPLATES, a Demo Job Template has been configured. This Job Template is
configured as a normal playbook run (Job Type is Run), using the hello_world.yml
playbook from Demo Project.

It runs on the machines in the Demo Inventory, using the Demo Credential
to authenticate to those machines. Privilege escalation will not be enabled
(hello_world.yml doesn't need it). Were it needed, the Demo Credential would
need to provide the necessary information. (In fact, because the Job Template is not using
privilege escalation and is running only on machines using ansible_connection:
local, there is very little information needed in the Demo Credential.)

No extra variables are set (analogous to the -e or --extra-vars option of an ansible-
playbook command).

Launching a Job

DO407-A2.3-en-2-20170725 387

Figure 11.9: Demo Job Template

Launching a Job
Once a Job Template is configured, it can be used to launch Jobs repeatedly using the same
parameters. A Job Template is somewhat like a canned ansible-playbook command complete
with options and arguments that's been written down or is in a shell history. When the Job
Template is used to launch a Job, it's like running that ansible-playbook command from a
shell prompt.

The following discussion looks at what happens when the Demo Job Template is used to
launch a Job. The exercise following this section also covers this in a more detailed hands-on
manner.

1. Under TEMPLATES, the Demo Job Template should be listed. Across from the name of the
Job Template is a rocket icon ("Start a job using this template"). Clicking that icon launches
the job using the settings in the Job Template.

Chapter 11. Implementing Ansible Tower

388 DO407-A2.3-en-2-20170725

Figure 11.10: Launching a Job

2. As the Job runs, a new status page opens that provides real-time information about the
progress of the Job. The DETAILS pane provides basic information about the job being run:
when it was launched, who launched it, what Job Template, Project, and Inventory were
used, and so on. While running, the job status is Pending.

3. As the Job executes, the status page also includes the output from the job run in
a job output pane. The job run output resembles the output generated when the
ansible-playbook command is executed on an Ansible playbook. This can be used for
troubleshooting purposes. In the example screenshot that follows, the play and tasks in the
playbook ran successfully.

Figure 11.11: Example Job output

Launching a Job

DO407-A2.3-en-2-20170725 389

4. After the Job completes, the Tower Dashboard (reachable by clicking on the TOWER link
at the upper left corner of the web interface) has a link to the status page for the Job run
under RECENT JOB RUNS. The other statistics on the Tower Dashboard are also updated.

5. Under JOBS, all the Jobs that have run on the Tower are listed. Clicking on the name of the
Job listed on this page also displays the status page logged for that Job.

Figure 11.12: Example JOBS screen

References
Ansible Tower Quick Setup Guide for Ansible Tower 3.1.1

http://docs.ansible.com/ansible-tower/3.1.1/html/quickstart/

Ansible Tower User Guide for Ansible Tower 3.1.1
http://docs.ansible.com/ansible-tower/3.1.1/html/userguide/

http://docs.ansible.com/ansible-tower/3.1.1/html/quickstart/
http://docs.ansible.com/ansible-tower/3.1.1/html/userguide/

Chapter 11. Implementing Ansible Tower

390 DO407-A2.3-en-2-20170725

Guided Exercise: Navigating the Ansible Tower
Web Interface

In this exercise, you will navigate through the Ansible Tower web interface and launch a job.

Outcomes

You should be able to browse through and interact with the Project, Inventory, Credential, and
Template screens in the Ansible Tower web interface to successfully launch a job.

Before you begin

You should have an Ansible Tower instance installed and configured from an earlier exercise
running on the tower system.

Log in as the student user on workstation and run lab tower-webui setup. This setup
script configures the tower virtual machine for the exercise.

[student@workstation ~]$ lab tower-webui setup

Steps

1. Log in to the Ansible Tower web interface running on the tower system using the admin
account and the redhat password.

2. Identify the Project that was created during the Ansible Tower installation and determine its
source.

2.1. Click PROJECTS in the top navigation menu to display the list of Projects. You should
see a Project named Demo Project, which was created during the Ansible Tower
installation.

2.2. Click the Demo Project link to view the details of the Project.

2.3. Look at the value of the SCM TYPE, PROJECT BASE PATH, PLAYBOOK DIRECTORY
fields to determine the origin of the Project. You should see that Demo Project was
obtained from the directory, _4__demo_project, which resides under the /var/lib/
awx/projects local directory on the Tower system.

3. Browse the Inventory, which was created during the Ansible Tower installation, and
determine its managed hosts.

3.1. Click INVENTORIES in the top navigation menu to display the list of known Inventories.
You should see an Inventory named Demo Inventory, which was created during the
Ansible Tower installation.

3.2. Click the Demo Inventory link to view the details of the Inventory. Under the HOSTS
section, you should see that the Inventory is composed of just one host, localhost.

4. View the details of the Credential, which was created during the Ansible Tower installation.

4.1. Click the Settings icon in the administration toolbar to display the list of administrative
interfaces.

4.2. Click CREDENTIALS to view the list of Credentials.

DO407-A2.3-en-2-20170725 391

4.3. Click the Demo Credential link to view the details of the Credential. You should see that
the Credential is a machine credential that uses the username admin.

5. Identify the Job Template, which was created during the Ansible Tower installation. Click
TEMPLATES in the top navigation menu to display the list of existing Job Templates. You
should see a Job Template named Demo Job Template, which was created during the
Ansible Tower installation.

6. Determine the Inventory, Project, and Credential utilized by the Demo Job Template Job
Template.

6.1. Click the Demo Job Template link to view the details of the Job Template.

6.2. Look at the INVENTORY field. You should see that the Job Template uses the Demo
Inventory Inventory.

6.3. Look at the PROJECT field. You should see that the Job Template uses the Demo
Project Project.

6.4. Look at the PLAYBOOK field. You should see that the Job Template executes a
hello_world.yml playbook.

6.5. Look at the MACHINE CREDENTIAL field. You should see that the Job Template uses
the Demo Credential Credential.

7. Launch a job using the Demo Job Template Job Template.

7.1. Exit the template details view by clicking the TEMPLATES link in the breadcrumb
navigation menu near the top of the screen.

7.2. On the TEMPLATES screen, click the rocket icon under the ACTIONS column of the
Demo Job Template row. This launches a job using the parameters configured in the
Demo Job Template template and redirects you to the job details screen. As the job
executes, the details of the job execution as well as its output is displayed.

8. Determine the outcome of the job execution.

8.1. When the job has completed successfully, the STATUS value changes to Successful.

8.2. Review the output of the job execution to determine, which tasks were executed. You
should see that the msg module was used to successfully display a "Hello World!"
message

9. Review the changes to the dashboard reflecting the job execution.

9.1. Click TOWER in the upper-left corner of the screen to return to the dashboard.

9.2. Review the JOB STATUS graph. The green line on the graph indicates the number of
recent successful job executions.

9.3. Review the RECENT JOB RUNS section. This section provides a list of the jobs recently
executed as well as their results. The Demo Job Template entry indicates that the

Chapter 11. Implementing Ansible Tower

392 DO407-A2.3-en-2-20170725

Job Template was used to execute a job. The green dot at the beginning of the entry
indicates the successful completion of the executed job.

Quiz: Implementing Ansible Tower

DO407-A2.3-en-2-20170725 393

Quiz: Implementing Ansible Tower

Choose the correct answer(s) to the following questions:

1. Which three of the following statements are a component of Ansible Tower 3.1 architecture?
(Choose three).

a. Django web application
b. MongoDB database
c. PostgreSQL database
d. RabbitMQ messaging system

2. Which three of the following statistics are reported by the Tower Dashboard? (Choose three).

a. Number of jobs executed
b. Number of credentials stored
c. Status of executed jobs
d. Number of hosts managed

3. Which of the following is not a requirement for Tower 3.1 installation?

a. An existing installation of Ansible
b. SELinux "targeted" policy
c. Minimum of 2GB of RAM
d. Minimum of 20GB of hard disk space

4. Which two of the following statements regarding the bundled Tower installer are incorrect?
(Choose two).

a. Includes additional software dependencies needed by Tower.
b. Requires access to third party repositories in order to meet software dependencies.
c. Requires access to Red Hat Enterprise Linux 7 Extras repository for software

dependencies.
d. Supports installations on systems running Ubuntu

5. Which of the following Tower resources cannot be accessed through the quick navigation
links?

a. Projects
b. Inventories
c. Notifications
d. Templates

Chapter 11. Implementing Ansible Tower

394 DO407-A2.3-en-2-20170725

Solution

Choose the correct answer(s) to the following questions:

1. Which three of the following statements are a component of Ansible Tower 3.1 architecture?
(Choose three).

a. Django web application
b. MongoDB database
c. PostgreSQL database
d. RabbitMQ messaging system

2. Which three of the following statistics are reported by the Tower Dashboard? (Choose three).

a. Number of jobs executed
b. Number of credentials stored
c. Status of executed jobs
d. Number of hosts managed

3. Which of the following is not a requirement for Tower 3.1 installation?

a. An existing installation of Ansible
b. SELinux "targeted" policy
c. Minimum of 2GB of RAM
d. Minimum of 20GB of hard disk space

4. Which two of the following statements regarding the bundled Tower installer are incorrect?
(Choose two).

a. Includes additional software dependencies needed by Tower.
b. Requires access to third party repositories in order to meet software dependencies.
c. Requires access to Red Hat Enterprise Linux 7 Extras repository for software

dependencies.
d. Supports installations on systems running Ubuntu

5. Which of the following Tower resources cannot be accessed through the quick navigation
links?

a. Projects
b. Inventories
c. Notifications
d. Templates

Summary

DO407-A2.3-en-2-20170725 395

Summary

In this chapter, you learned:

• Ansible Tower 3.1 is a centralized management solution for Ansible projects.

• Ansible Tower is offered with two installer options. The standard installer downloads packages
from network repositories. The bundled installer includes third party software dependencies.

• Job Templates are prepared commands to execute Ansible playbooks. Important components
of a job template include an inventory, machine credential, Ansible project and playbook.

• A Job is launched from a Job Template, and represents a single run of a playbook on an
inventory of machines.

• Tower Dashboard provides summaries on the status of hosts, inventories, projects, and
executed jobs.

• Quick navigation links at the top of the Tower web interface provide access to commonly used
Tower resources.

• The Settings menu in the Tower web interface provides access to the management interfaces
of Tower resources which are not accessible through the quick navigation links.

396

DO407-A2.3-en-2-20170725 397

TRAINING

CHAPTER 12

IMPLEMENTING ANSIBLE IN A
DEVOPS ENVIRONMENT

Overview

Goal Implement Ansible in a DevOps environment using Vagrant.

Objectives • Describe Ansible in a DevOps environment and provision
Vagrant machines.

• Deploy Vagrant in a DevOps environment.

Sections • Provisioning Vagrant Machines (and Guided Exercise)

• Deploying Vagrant in a DevOps Environment (and Guided
Exercise)

Lab • Implementing Ansible in a DevOps Environment

Chapter 12. Implementing Ansible in a DevOps Environment

398 DO407-A2.3-en-2-20170725

Provisioning Vagrant Machines

Objectives
After completing this section, students should be able to:

• Discuss Ansible in a DevOps environment.

• Provision a Vagrant machine.

DevOps in the enterprise
In recent years, the DevOps approach has seen increasing adoption in the enterprise as
organizations strive to resolve the conflict between their development and operational teams.
DevOps derives its name from the core principle that software development and operations
performance can be improved and accelerated through better communication, integration, and
cooperation between software developers and IT operations professionals.

Infrastructure as code

DevOps places a strong focus on the ability to build and maintain essential components with
automated, programmatic procedures. One key DevOps concept is the idea of Infrastructure
as Code (IaC). This concept is an important and groundbreaking paradigm shift for the many
system administrators who currently manage their infrastructure through manual execution of
administrative commands and editing of configuration files. By designing, implementing, and
managing infrastructure as code, configurations can be predictably and consistently deployed
and replicated throughout an environment.

In recent years, the Ansible software has become a popular tool for managing infrastructure
code. Ansible allows tasks such as software installations and server configurations to be
automated. This automation removes the introduction of human errors resulting from manual
administration. It also allows for the repeatability of routine tasks and removes the complexity
of these tasks so they can be easily performed even by entry level administrators. Ansible's use
can greatly improve an organization's operational efficiency and simultaneously enhance the
predictability of successful outcomes.

Ansible's architecture allows for the centralization of configuration changes. This design results
in greater control over the infrastructure code by effectively implementing a single point of entry
for changes to the infrastructure.

Ansible's declarative nature also makes it self-documenting and helps administrators easily get
a clear picture of their infrastructure configuration. In addition to enforcing configuration end
states, Ansible also provides administrators the ability to audit system configurations and detect
when they deviate from the desired state.

While configuration management tools like Ansible simplify and improve infrastructure
management, they also introduce the dilemma of how this new infrastructure code should
be managed. To overcome this challenge, administrators could follow the example of their
development counterparts. In accordance with development best practices, administrators
should use a version control system, such as Git, to manage their infrastructure code.

Version control allows administrators to implement a life cycle for the different stages of their
infrastructure code, such as development, QA, and production. By managing infrastructure

Using Vagrant

DO407-A2.3-en-2-20170725 399

code with a version control tool, administrators can test their infrastructure code changes in
noncritical development and QA environments to minimize surprises and disruptions when
deployments are implemented in production environments.

Using Vagrant
When testing code for production deployment, results are only relevant and valid if a test is
conducted in a development environment that is identical to the production environment. This
is as true for software development as it is for the changes to infrastructure code. Virtualization
technology makes it easy and cost-effective to stand up a machine for testing code before
production deployment. However, the real challenge is how to construct a development
environment on the virtual machine so that it is a replica of the production environment.

The Vagrant software overcomes this challenge by streamlining the creation and configuration of
virtual development environments. Vagrant has its own domain-specific language which is used
to create a set of instructions for managing virtualization software such as Virtualbox, KVM, and
VMware. It can also interact with configuration management software such as Ansible, Puppet,
Salt, and Chef. Vagrant simplifies the process of creating and managing consistent virtualized
environments needed for development.

Following the Infrastructure-as-Code approach, Vagrant automates the creation of a virtual
machine, its hardware configuration, software installation, system configuration, and
development source code retrieval by allowing the entire process to be specified within a plain
text configuration file. With Vagrant, deploying a development environment can be as simple as
checking out a project from version control and executing vagrant up on the command line.

An additional benefit of Vagrant's management of virtualized environments as code is that it
is very easy not just to create a virtualized development environment, but also to share the
identical environment with different team members. Because it insulates the end user from
the complexities of setting up and sharing identical virtualized development environments,
Vagrant is an ideal tool not only for administrators to test infrastructure code changes but also
for developers to test software releases.

Vagrant components

The Vagrant software is composed of the following main components:

Vagrant: The Vagrant software automates the build and configuration of virtual machines. A
command line interface is provided to administrators for the management of Vagrant projects.
Using the vagrant command provided, administrators can instantiate, remove, and manage
Vagrant machines. Vagrant is currently not packaged with Red Hat Enterprise Linux but is
available for download from the Vagrant website, https://www.vagrantup.com.

Box: A box is a tar file that contains a virtual machine image. A box file serves as the foundation
of a Vagrant virtualized environment and is used to create virtual machine instances. For greater
flexibility, the image should contain just a base operating system installation. This allows the
image to be used as a starting point for creating different virtual machines regardless of the
specific requirements of their applications. These application-specific requirements can be
fulfilled through automated configuration after the virtual machine is created.

Provider: A provider allows Vagrant to interface with the underlying platform that a Vagrant
box image is deployed on. Vagrant comes packaged with a provider for Oracle's VirtualBox.
Alternative providers are currently available for other virtualization platforms such as VMware,
Hyper-V, and KVM.

Chapter 12. Implementing Ansible in a DevOps Environment

400 DO407-A2.3-en-2-20170725

Vagrantfile: Vagrantfile is a plain text file that contains the instructions for creating a Vagrant
virtualized environment. The instructions are written using Ruby syntax. The contents of this file
can be used to prescribe how the virtual machine is to be built and configured.

Note
The creator of Vagrant started the HashiCorp company in 2012 to further the
development of Vagrant. Administrators can create their own Vagrant box images or
leverage existing images publicly available at HashiCorp's Atlas box catalog located
at http://www.vagrantcloud.com. Preconfigured RHEL 7.1 Vagrant box images
for libvirt and Virtual box are available from the Red Hat Container Development Kit.
This course will use a preconfigured Red Hat Enterprise Linux box image because the
creation of a Vagrant box image is beyond the scope of this course.

Important
Box files and their contained images are specific to each provider. For example, a box
file created for use with the VirtualBox provider is not compatible with the VMware
provider. Organizations using multiple providers will need to have separate box files
that are specific to each provider.

Configuring a Vagrant environment
Vagrant environments are meant to be operated in isolation from each other. To create a new
Vagrant environment, start by creating a project directory for the new environment. Within
this project directory, create a Vagrantfile containing the instructions for deploying a new
Vagrant machine. The following example shows how developers can initiate Vagrant projects on
their workstations.

[root@host ~]# mkdir -p /root/vagrant/project
[root@host ~]# cd /root/vagrant/project
[root@host project]# vim Vagrantfile

Creating a basic Vagrantfile
The following lines from a Vagrantfile file provide instructions to Vagrant for the creation of
a basic virtual machine. The config.vm.box method call specifies that the virtual machine be
cloned from a box image named rhel7.1, which can be obtained from the location specified
by the config.vm.box_url method call. The config.vm.hostname method call instructs
Vagrant to name the virtual machine sandbox.example.com when it is created.

Vagrant.configure(2) do |config|
 config.vm.box = "rhel7.1"
 config.vm.box_url = "http://content.example.com/ansible2.0/x86_64/dvd/vagrant/rhel-
server-libvirt-7.1-1.x86_64.box"
 config.vm.hostname = "sandbox.example.com"
end

Managing Vagrant machines

With a Vagrantfile file created, the Vagrant machine can be instantiated by executing the
vagrant up command from the root of the project directory.

Configuring a Vagrant environment

DO407-A2.3-en-2-20170725 401

[root@host project]# vagrant up
Bringing machine 'default' up with 'libvirt' provider...
==> default: Box 'rhel7.1' could not be found. Attempting to find and install...
 default: Box Provider: libvirt
... Output omitted ...
==> default: Waiting for SSH to become available...
 default:
 default: Vagrant insecure key detected. Vagrant will automatically replace
 default: this with a newly generated keypair for better security.
 default:
 default: Inserting generated public key within guest...
 default: Removing insecure key from the guest if it's present...
 default: Key inserted! Disconnecting and reconnecting using new SSH key...
... Output omitted ...
==> default: Setting hostname...
==> default: Configuring and enabling network interfaces...
==> default: Rsyncing folder: /root/vagrant/project/ => /home/vagrant/sync

The output of vagrant up showcases all the configuration and administration tasks that
Vagrant automates and insulates the user from. These tasks include retrieval of the box image,
creation of the virtual machine, setting the host name, configuring network interfaces, and
copying files from the host to the Vagrant machine. If static IP addressing is not defined in
Vagrantfile, the virtual machine is dynamically assigned an IP address by the virtualization
provider.

When the Vagrant machine has started, it can be accessed using the vagrant ssh command.
During the deployment of the Vagrant machine, an SSH key is generated on the host and then
installed in the ~/.ssh directory of the vagrant user on the Vagrant machine. The vagrant
ssh command uses this key to authenticate an SSH session to the Vagrant machine as the
vagrant user.

[root@host project]# vagrant ssh
Last login: Wed Oct 21 14:02:44 2015 from 192.168.121.1

[vagrant@sandbox ~]$ id
uid=1000(vagrant) gid=1000(vagrant) groups=1000(vagrant),1001(docker)
 context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Note
The Vagrant software expects a vagrant user account to be available on the Vagrant
machine for SSH access. Therefore, it is standard practice to create the vagrant user
account and configure its sudo privileges during the creation of base virtual machine
images. While SSH key-based authentication is used by Vagrant, it is also standard
practice to set the password of the vagrant user account to 'vagrant'.

Having an identical username/password combination goes against good security
practice. However, Vagrant environments are meant to be standalone virtual
environments hosted on a physical system for development purposes. Having a
standard account and password for the management of Vagrant machines also
facilitates the use of Vagrant projects by multiple developers.

Chapter 12. Implementing Ansible in a DevOps Environment

402 DO407-A2.3-en-2-20170725

Vagrant also offers a helpful feature called synced folders. By default, Vagrant uses the
synchronized folder feature to copy the content of the project directory to a directory on the
Vagrant machine (~/sync/) that is accessible by the vagrant user.

[root@host project]# ls -l
total 4
-rw-r--r--. 1 root root 227 Oct 21 13:50 Vagrantfile

[vagrant@sandbox project]$ ls -l /home/vagrant/sync
total 4
-rw-r--r--. 1 vagrant vagrant 227 Oct 21 13:50 Vagrantfile

To allow for the execution of privileged commands on Vagrant machines, box images are built
with sudo privileges granted to the vagrant user. This sudo privilege proves especially useful
when configuring more advanced Vagrant machine deployments, which will be discussed later.

[vagrant@sandbox project]$ sudo -l
Matching Defaults entries for vagrant on this host:
 !visiblepw, always_set_home, env_reset, env_keep="COLORS DISPLAY HOSTNAME
 HISTSIZE INPUTRC KDEDIR LS_COLORS", env_keep+="MAIL PS1 PS2 QTDIR USERNAME
 LANG LC_ADDRESS LC_CTYPE", env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
 LC_MESSAGES", env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User vagrant may run the following commands on this host:
 (ALL) NOPASSWD: ALL

When a Vagrant machine is no longer needed, execute the vagrant halt command to shut
down the Vagrant machine. Another option is to execute the vagrant destroy command to
stop the running machine, as well as clean up all the resources which were created when the
machine was deployed.

[vagrant@sandbox project]$ exit
logout
Connection to 192.168.121.85 closed.

[root@host project]# vagrant destroy
==> default: Removing domain...

Vagrant provisioners

The previous example demonstrated the use of Vagrant for quick deployment of a simple virtual
machine. Even though this is convenient, the real strength of Vagrant for creating development
systems for DevOps environments lies in its provisioning feature.

As mentioned previously, a box image should contain just the base operating system so the
image can serve as the foundation for the customization of different virtual machines. Vagrant's
provisioning feature automates the software installation and configuration changes needed to
overlay the customizations over the base operating system.

Provisioning is performed with the use of one or more provisioners offered by Vagrant.
Provisioners are enabled in a Vagrantfile file with the use of the config.vm.provision
method call.

Configuring a Vagrant environment

DO407-A2.3-en-2-20170725 403

Vagrant offers a variety of provisioners to suit the provisioning method preferred by
administrators. The most basic provisioner is the shell provisioner which uses shell commands to
perform provisioning tasks.

The following example demonstrates how Vagrant's shell provisioner can be used to automate
the configuration of yum repositories after the Vagrant machine is deployed with a base
operating system.

Vagrant.configure(2) do |config|

... Configuration omitted ...

 config.vm.provision "shell", inline: <<-SHELL
 sudo cp /home/vagrant/sync/etc/yum.repos.d/* /etc/yum.repos.d
 SHELL

... Configuration omitted ...

end

References
Boxes — Vagrant Documentation
https://docs.vagrantup.com/v2/boxes.html

Providers — Vagrant Documentation
https://docs.vagrantup.com/v2/providers/index.html

Vagrantfile — Vagrant Documentation
https://docs.vagrantup.com/v2/vagrantfile/index.html

Vagrant Command-Line Interface — Vagrant Documentation
https://docs.vagrantup.com/v2/cli/index.html

Vagrant Provisioning — Vagrant Documentation
https://docs.vagrantup.com/v2/provisioning/index.html

https://docs.vagrantup.com/v2/boxes.html
https://docs.vagrantup.com/v2/providers/index.html
https://docs.vagrantup.com/v2/vagrantfile/index.html
https://docs.vagrantup.com/v2/cli/index.html
https://docs.vagrantup.com/v2/provisioning/index.html

Chapter 12. Implementing Ansible in a DevOps Environment

404 DO407-A2.3-en-2-20170725

Guided Exercise: Provisioning Vagrant
Machines

In this exercise, you will provision a Vagrant machine for use in a DevOps environment.

Outcomes

You should be able to deploy a Vagrant machine and configure it using the shell provisioner.

Before you begin

Reset your tower server.

Steps

1. Log in to workstation as student and run the ansible-vagrant-practice lab setup
script. The script will make the Vagrant software available on tower.

[student@workstation ~]$ lab ansible-vagrant-practice setup

2. Log in to tower as the root user. Create a work directory, /root/vagrant, for Vagrant
work. Also create a subdirectory, webapp, inside the Vagrant work directory.

[root@tower ~]# mkdir -p vagrant/webapp

3. In the /root/vagrant/webapp directory, create a Vagrant configuration file,
Vagrantfile by copying it from /var/tmp/Vagrantfile. This file will be used to create
a Vagrant machine using a provided box image, name the machine box image rhel7.1, and
configure the machine with a host name of dev.lab.example.com.

[root@tower ~]# cd vagrant/webapp
[root@tower webapp]# cp /var/tmp/Vagrantfile .
[root@tower webapp]# cat Vagrantfile
Vagrant.require_version ">= 1.7.0"

Vagrant.configure(2) do |config|

 # Identify which Vagrant box to use
 config.vm.box = "rhel7.1"
 config.vm.box_url = "http://content.example.com/ansible2.0/x86_64/dvd/vagrant/
rhel-server-libvirt-7.1-1.x86_64.box"

 # Define host settings
 config.vm.hostname = "dev.lab.example.com"

 # Define sync folder(s)

 # Define shell provisioner

 # Define ansible provisioner

end

4. Test the deployment of the virtual machine with the new configuration.

DO407-A2.3-en-2-20170725 405

[root@tower webapp]# vagrant up
Bringing machine 'default' up with 'libvirt' provider...
==> default: Box 'rhel7.1' could not be found. Attempting to find and install...
 default: Box Provider: libvirt
==> default: Creating image (snapshot of base box volume).
==> default: Creating domain with the following settings...
...output omitted...
==> default: Setting hostname...
==> default: Configuring and enabling network interfaces...
==> default: Rsyncing folder: /root/vagrant/webapp/ => /home/vagrant/sync

5. Check to see which Yum repositories are available in the Vagrant box.

[root@tower webapp]# vagrant ssh
[vagrant@dev ~]$ yum repolist
Loaded plugins: product-id, subscription-manager
repolist: 0

6. Exit from and shut down the Vagrant machine. Note that your IP address may be different
from the one shown in the example.

[vagrant@dev ~]$ exit
logout
Connection to 192.168.121.238 closed.

[root@tower webapp]# vagrant destroy
==> default: Removing domain...

7. Because there are no Yum repositories available, configure Vagrant so that the necessary
Yum repository configuration files are created when the Vagrant machine is deployed.

7.1. Create a directory within the Vagrant work directory to host the necessary Yum
repository configuration file and then change to that directory.

[root@tower webapp]# mkdir -p /root/vagrant/webapp/etc/yum.repos.d

7.2. Copy the /etc/yum.repos.d/rhel_dvd.repo Yum repository configuration file to
this newly created directory.

[root@tower webapp]# cp /etc/yum.repos.d/rhel_dvd.repo /root/vagrant/webapp/etc/
yum.repos.d/

7.3. In the /root/vagrant/webapp directory, create a shell script, provisioner.sh,
which copies Yum repo configuration from the sync directory to the /etc/
yum.repos.d directory on the Vagrant box. It should have the following contents:

#!/bin/bash

Install yum config file
sudo cp /home/vagrant/sync/etc/yum.repos.d/rhel_dvd.repo /etc/yum.repos.d/
rhel_dvd.repo

Chapter 12. Implementing Ansible in a DevOps Environment

406 DO407-A2.3-en-2-20170725

The copy must be executed using sudo because it requires root privileges.

7.4. Modify Vagrantfile so that the provisioner.sh script is executed by the
shell provisioner during provisioning to install the Yum repository configuration
file to /etc/yum.repos.d/rhel_dvd.repo. Add the following lines inside the
Vagrant.configure code block in the Vagrantfile file. They should be inserted
immediately below the “# Define shell provisioner” comment.

 # Define shell provisioner
 config.vm.provision "shell", path: "provisioner.sh"

8. Provision the Vagrant machine using the newly modified configuration.

[root@tower webapp]# vagrant up
Bringing machine 'default' up with 'libvirt' provider...
==> default: Creating image (snapshot of base box volume).
==> default: Creating domain with the following settings...
...output omitted...
==> default: Rsyncing folder: /root/vagrant/webapp/ => /home/vagrant/sync
==> default: Running provisioner: shell...
 default: Running: /tmp/vagrant-shell20160427-14951-pb7qkg.sh

9. Verify that a Yum repository is now available.

[root@tower webapp]# vagrant ssh

[vagrant@dev ~]$ yum repolist
Loaded plugins: product-id, subscription-manager
repo id repo name status
rhel_dvd Remote classroom copy of dvd 4,620
repolist: 4,620

Deploying Vagrant in a DevOps Environment

DO407-A2.3-en-2-20170725 407

Deploying Vagrant in a DevOps Environment

Objectives
After completing this section, students should be able to:

• Deploy Vagrant in a DevOps environment using Ansible

Integrating Vagrant with Ansible
In the previous section, deploying a Vagrant machine with a base operating system was shown.
Vagrant's provisioning feature and the shell provisioner were demonstrated for the management
of configurations on Vagrant machines after their creation from the base operating system
image.

In addition to the shell provisioner, Vagrant offers a variety of provisioners to suit the
provisioning methodology preferred by an organization. Two types of provisioners are offered
by the Vagrant software for administrators who want to manage their Vagrant machines with
Ansible.

The ansible provisioner performs its work by executing Ansible on the Vagrant host. When using
this provisioner, Ansible is installed and executed on the Vagrant host which serves the role of
the control node and the Vagrant machines are the managed hosts.

In contrast, the ansible_local provisioner performs its work by executing Ansible on the Vagrant
machines. To use this provisioner, Ansible is installed and executed on the Vagrant machine. The
Vagrant machine serves as the control node and manages itself as the managed node.

When using Vagrant's ansible provisioner in DevOps environments, it is entirely possible to
create a Vagrant machine that is configured identically to production systems. In both cases, the
systems are seeded with base operating system installations and then configured through the
execution of playbooks. As long as the same playbook used to provision a production system is
executed against a Vagrant machine, both systems can be configured identically. The Vagrant
machine can then serve as a valid and useful development environment for testing software
release or infrastructure code changes before production deployment.

Using synced folders

Vagrant offers several other features to facilitate the provisioning process. As mentioned
previously, one helpful feature is synchronized folders. By default, Vagrant uses the feature to
copy contents of the project directory on the host to a directory on the Vagrant machine during
its instantiation.

Additional content can be copied from the host to the Vagrant machine by configuring additional
synchronized folders in the Vagrantfile configuration file. Vagrant offers various mechanisms
for keeping these folders synchronized. Vagrant's default synchronization folder type is
VirtualBox. This folder type offers a bidirectional synchronization of the contents on the host
and the Vagrant machine folder, and will continuously synchronize contents as changes are
introduced to folder contents on either the host or the Vagrant machine.

VirtualBox synchronized folders are only available when using the VirtualBox provider.
When using another provider, a different synchronization folder type is required. Consult the
documentation to understand how each synchronized folder type works, because they can
behave differently.

Chapter 12. Implementing Ansible in a DevOps Environment

408 DO407-A2.3-en-2-20170725

Because this course does not use the VirtualBox provider, the rsync synchronized folder
type will be used instead. Unlike VirtualBox synchronized folders, rsync synchronized folders
are unidirectional and will only copy files from the host to the Vagrant machine and not the
other way around. In addition, the rsync mechanism does not constantly copy changes to folder
contents. It only copies folder contents from the host to the Vagrant machine when vagrant up
is executed. If folder contents need to be recopied after this initial synchronization, execute the
vagrant rsync command as shown in the following example.

[root@host project]# vagrant rsync
==> default: Rsyncing folder: /root/vagrant/project/ => /home/vagrant/sync

Configuring Vagrant for Ansible provisioning

Like the shell provisioner, the Vagrant Ansible provisioners are employed through the use of
the config.vm.provision method call in the Vagrantfile configuration file. The following
example demonstrates how Vagrant's ansible provisioner can be used in conjunction with an
Ansible playbook, playbook.yml, located in the Vagrant project directory, to automate the
configuration of a Vagrant machine after it is deployed with a base operating system.

Vagrant.configure(2) do |config|

... Configuration omitted ...

 config.vm.provision "ansible" do |ansible|
 ansible.playbook = 'playbook.yml'
 end

... Configuration omitted ...

end

Because the ansible provisioner is used, ansible-playbook is executed on the Vagrant
host. Therefore, the Ansible software must be already be installed on the Vagrant host when this
Vagrant Ansible provisioner is used.

In contrast with the ansible_local provisioner, because Ansible is executed on the Vagrant
machine, the Ansible software must already be installed on the Vagrant machine prior to the
execution of the provisioner. This can be accomplished by installing the Ansible software using
another provisioner prior to execution of the ansible_local provisioner.

The following example demonstrates how Vagrant's ansible_local provisioner can be used in
conjunction with an Ansible playbook, playbook.yml, located in the Vagrant project directory,
to automate the configuration of a Vagrant machine after it is deployed with a base operating
system. Because the Ansible software is a prerequisite for the successful execution of the
ansible_local provisioner, the example uses the shell provisioner to first configure a Yum
repository and install the Ansible software on the Vagrant machine.

Vagrant.configure(2) do |config|

... Configuration omitted ...

 config.vm.provision "shell", inline: <<-SHELL
 sudo cp /home/vagrant/sync/etc/yum.repos.d/* /etc/yum.repos.d
 sudo yum install -y ansible
 SHELL

Creating a Vagrant development environment

DO407-A2.3-en-2-20170725 409

... Configuration omitted ...

 config.vm.provision "ansible_local" do |ansible|
 ansible.playbook = 'playbook.yml'
 end

... Configuration omitted ...

end

Creating a Vagrant development environment
When a Vagrant machine has been provisioned using a Vagrant Ansible provisioner, it should
have all the software needed for its intended purpose. For example, when deploying a Vagrant
machine for the development of a web server, one would expect the Ansible playbook used by
the Ansible provisioner to install Apache, start the web service, and configure the firewall for
HTTP access.

In addition to configuration management, the creation of a development environment can be
automated further by incorporating application source code installation into the provisioning
playbook. Ansible offers several source control modules to work with version control software,
such as Git and Subversion.

The following example shows how the contents of a web application's DocumentRoot folder can
be installed by calling the git module in an Ansible playbook. The task uses the git module
to clone the contents of the Git repository, webapp.git, on demo.example.com into the /
var/www/ directory on the Vagrant machine. The repo option defines the address of the Git
repository. The dest option defines the target location for the installation of the source code on
the Vagrant machine. The accept_host option is useful when accessing a Git repository using
the SSH protocol. It automatically adds the host key for the repository URL.

... Configuration omitted ...
 - name: get source
 git:
 repo: ssh://student@workstation/home/student/git/webapp.git
 dest: /var/www/html
 accept_hostkey: yes
... Configuration omitted ...

Using forwarded ports

If the application being developed has network services, Vagrant provides a networking
configuration feature called forwarded ports, which maps network ports on the host system to
ports on the Vagrant machine. The following example shows how the Vagrantfile file can be
modified so that Vagrant forwards traffic directed at port 8000 on the host system to port 80 on
the Vagrant machine.

Vagrant.configure(2) do |config|

... Configuration omitted ...

 config.vm.network :forwarded_port, guest: 80, host: 8000
end

Chapter 12. Implementing Ansible in a DevOps Environment

410 DO407-A2.3-en-2-20170725

Note
Configuration changes made to Vagrantfile will not have any effect on an running
Vagrant machine. Changes will take effect when the machine is halted with vagrant
halt or vagrant destroy, and then launched again with vagrant up. An
alternative is to execute the vagrant reload command. This command performs
the same actions as vagrant halt followed by vagrant up. Provisioners defined
with the Vagrantfile file will not be re-executed when vagrant reload is issued.

Creating a reusable Vagrant development environment

When a Vagrant project is configured to use Ansible in conjunction with a playbook which
configures Vagrant machines according to an organization's build standard and also installs
application source code, it can be made into a reusable development environment that is easily
deployed. Version control systems are widely used by developers to manage application source
code. As mentioned previously, one of the advantages of Vagrant's design is that it follows the
infrastructure-as-code approach. Because the configuration of a Vagrant machine is maintained
as code, it too can also be managed by a version control system. By placing an entire Vagrant
project directory in a version control system, such as Git, administrators effectively bundle all
the components needed to recreate a preconfigured Vagrant development environment together
into a single Git project.

Suppose a new team of developers were tasked to work on the application source code. These
developers merely need to install the Vagrant software on their workstations and then run git
clone followed by vagrant up. The git clone command retrieves all the Vagrant project
components (Vagrant configuration, configuration files, playbooks, and so on). The vagrant up
recreates the Vagrant development environment using Ansible and the retrieved components.

Because the recreation of the development environment is dictated by coded instructions,
each developer ends up with a development environment that is not only identical to that on
each of their teammates' workstations, but also identical to that on the production server.
This provides the developers assurance that application source code changes validated on the
Vagrant development environments on their workstations will behave identically when deployed
to production. Perhaps the most elegant part of this design is that no work was required on the
part of the operations staff to get these developers up and running.

The intelligence of this design becomes even more evident when changes are required by the
operations team. As operations staff make changes to the production environment, such as
deploying new software versions to address bugs or security vulnerabilities, the same changes
need to be made to the associated development environments to keep them identical. This
is accomplished quickly and easily by implementing the production playbook changes to
the playbook used for the provisioning of the Vagrant development machines. The Ansible
provisioner applies the new configuration when new Vagrant machines are instantiated. This has
little to no impact on the developers, who are free to continue with development tasks.

A development environment implemented in this manner with Vagrant allows both development
and operations teams to operate in cooperation rather than in conflict with each other.
Developers are empowered to easily deploy development environments that are replicas of the
production environment by themselves without burdening the operations team. Because the
operations team have control over development environments' resemblance to the production
environment, code deployments to production should be uneventful.

Creating a Vagrant development environment

DO407-A2.3-en-2-20170725 411

References
Ansible and Vagrant — Vagrant Documentation
https://www.vagrantup.com/docs/provisioning/ansible_intro.html

Ansible Provisioner — Vagrant Documentation
https://www.vagrantup.com/docs/provisioning/ansible.html

Ansible Local Provisioner — Vagrant Documentation
https://www.vagrantup.com/docs/provisioning/ansible_local.html

Vagrant Rsync Synced Folder — Vagrant Documentation
https://docs.vagrantup.com/v2/synced-folders/rsync.html

Vagrant Forwarded Ports — Vagrant Documentation
https://docs.vagrantup.com/v2/networking/forwarded_ports.html

https://www.vagrantup.com/docs/provisioning/ansible_intro.html
https://www.vagrantup.com/docs/provisioning/ansible.html
https://www.vagrantup.com/docs/provisioning/ansible_local.html
https://docs.vagrantup.com/v2/synced-folders/rsync.html
https://docs.vagrantup.com/v2/networking/forwarded_ports.html

Chapter 12. Implementing Ansible in a DevOps Environment

412 DO407-A2.3-en-2-20170725

Guided Exercise: Deploying Vagrant in a
DevOps Environment

In this exercise, you will create a development environment using Vagrant and Ansible.

Outcomes

You should be able to use Ansible to deploy a Vagrant machine as a development environment
for a website.

Before you begin

tower should have a working Vagrant machine configured with a YUM repository as covered in a
previous exercise.

Steps

1. Log in to workstation and run lab ansible-devops-practice setup. The lab
setup script will install and configure the Git on the repository server and on tower. It also
downloads the playbook needed for this exercise.

[student@workstation ~]$ lab ansible-devops-practice setup

2. Log in to tower as the root user. Change directory to /root/vagrant/webapp and verify
the status of the Vagrant environment.

2.1. The Vagrant machine from the previous exercise should not be running.

[root@tower ~]# cd vagrant/webapp
[root@tower webapp]# vagrant status
Current machine states:

default not created (libvirt)

The Libvirt domain is not created. Run `vagrant up` to create it.

2.2. If the Vagrant machine from the previous exercise is running, terminate the instance.

[root@tower webapp]# vagrant status
Current machine states:

default running (libvirt)

The Libvirt domain is running. To stop this machine, you can run
`vagrant halt`. To destroy the machine, you can run `vagrant destroy`.

[root@tower webapp]# vagrant destroy
==> default: Removing domain...
==> default: Running cleanup tasks for 'shell' provisioner...

3. Create a playbook, intranet-dev.yml by copying it from /var/tmp/intranet-
dev.yml. This playbook will be used with the Vagrant ansible provisioner to provision the
Vagrant machine as a website development environment.

DO407-A2.3-en-2-20170725 413

[root@tower webapp]# cp /var/tmp/intranet-dev.yml .

4. Review the downloaded playbook to determine the tasks that will be performed. The
playbook will ensure that the latest versions of the httpd and firewalld packages are installed
and that firewalld is configured to allow incoming connections for the http service. It
also installs SSH private key and Git configuration files which will then be used to obtain the
source code for the intranet website.

- name: intranet services
 hosts: all
 become: yes
 become_user: root
 tasks:
 - name: latest httpd version installed
 yum:
 name: httpd
 state: latest
 - name: latest firewalld version installed
 yum:
 name: firewalld
 state: latest
 - name: httpd enabled and running
 service:
 name: httpd
 enabled: true
 state: started
 - name: firewalld enabled and running
 service:
 name: firewalld
 enabled: true
 state: started
 - name: firewalld permits http service
 firewalld:
 service: http
 permanent: true
 state: enabled
 notify:
 - restart firewalld
 - name: create .ssh directory
 file:
 path: /root/.ssh
 state: directory
 mode: 0700
 - name: install private key file
 copy:
 src: /root/.ssh/id_rsa
 dest: /root/.ssh/id_rsa
 mode: 0600
 - name: install git configuration
 copy:
 src: /root/.gitconfig
 dest: /root/.gitconfig
 mode: 0644
 - name: get source
 git:
 repo: ssh://student@workstation/home/student/git/webapp.git
 dest: /var/www/html
 accept_hostkey: yes
 handlers:
 - name: restart firewalld

Chapter 12. Implementing Ansible in a DevOps Environment

414 DO407-A2.3-en-2-20170725

 service:
 name: firewalld
 state: restarted

5. Modify the Vagrant configuration file to use the ansible provisioner to configure the
Vagrant machine to host a website development environment.

5.1. Modify the Vagrant configuration file so that the ansible provisioner is used to
provision the Vagrant machine using the downloaded playbook, intranet-dev.yml.

 # Define ansible provisioner
 config.vm.provision "ansible" do |ansible|
 ansible.playbook = "intranet-dev.yml"
 end
end

5.2. Modify the Vagrant configuration file host settings so port 80 of the Vagrant machine
can be accessed on port 8000 on localhost. Add the following line within the
Vagrant.configure code block.

 # Define host settings
 config.vm.hostname = "dev.lab.example.com"
 config.vm.network "forwarded_port", guest: 80, host: 8000

6. Install Ansible on the Vagrant host, tower, so that it is available for use by Vagrant's
ansible provisioner.

[root@tower webapp]# yum install -y ansible

7. Bring the Vagrant machine up. It will use the newly introduced changes.

[root@tower webapp]# vagrant up
Bringing machine 'default' up with 'libvirt' provider...
==> default: Creating image (snapshot of base box volume).
==> default: Creating domain with the following settings...
...output omitted...
==> default: Running provisioner: ansible...

PLAY [intranet services for development] ***************************************

TASK [Gathering Facts] ***
ok: [default]

TASK [latest httpd version installed] **
changed: [default]

TASK [latest firewalld version installed] **************************************
changed: [default]

TASK [httpd enabled and started] ***
changed: [default]

TASK [firewalld enabled and started] ***
changed: [default]

TASK [firewalld permits http service] **

DO407-A2.3-en-2-20170725 415

changed: [default]

TASK [create .ssh directory] ***
changed: [default]

TASK [install private key file] **
changed: [default]

TASK [install git configuration] ***
changed: [default]

TASK [get source] **
changed: [default]

RUNNING HANDLER [restart firewalld] **
changed: [default]

PLAY RECAP ***
default : ok=11 changed=10 unreachable=0 failed=0

8. Verify that the web application is working properly on the Vagrant machine using port 8000
on localhost.

[root@tower webapp]# curl http://localhost:8000
Welcome to Web App 1.0

Chapter 12. Implementing Ansible in a DevOps Environment

416 DO407-A2.3-en-2-20170725

Lab: Implementing Ansible in a DevOps
Environment

In this lab, you will modify and publish web content using Vagrant and Ansible.

Outcomes

You should be able modify web content on a development website running on a Vagrant machine
and deploy the changes to a production server using Ansible.

Before you begin

The development team you just joined is hosting their intranet development web server on a
Vagrant machine. Vagrant uses the ansible provisioner in conjunction with the intranet-
dev.yml file to provision this Vagrant machine.

In addition, to streamline the process of pushing web content to the intranet production web
server, servera, the team is making use of an ansible.cfg configuration file, inventory
inventory file, and an intranet-prod.yml playbook. They are storing everything in a Git
repository so that a new team member can just check out the project and have everything they
need to work on the development web server and then push code to the production web server.

You have been assigned the task of updating the /var/www/html/index.html so that it
contains the message "Welcome to Web App 2.0".

Before you begin, reset tower. Then, log in to workstation and run lab ansible-vagrant-
lab setup to install the Vagrant software, create the Git repository, as well as install and
configure the Git software.

[student@workstation ~]$ lab ansible-vagrant-lab setup

Steps

1. Log in to tower as the root user and install the Ansible software so it will be available for
use by the Vagrant ansible provisioner.

2. Create a working directory for the Vagrant web application environment.

3. Clone the Vagrant intranet development environment from the Git repository on
workstation using the following command.

[root@tower webapp]# git clone student@workstation:/var/git/vagrantwebapp.git .

Start the Vagrant machine that hosts the intranet development web server.

3.1. Clone the Vagrant environment from the vagrantwebapp.git Git repo.

3.2. Start the Vagrant machine.

4. Connect to and verify the contents on the development intranet website from the Vagrant
host, tower.

[root@tower webapp]# curl http://localhost:8000

DO407-A2.3-en-2-20170725 417

Welcome to Web App 1.0

5. Update the development intranet website by modifying the /var/www/html/index.html
file on the Vagrant machine. Commit the change and push the changes to the Git repository
using the following commands executed from /var/www/html directory on the Vagrant
machine.

[root@dev html]# git commit -am 'New web app version'
[root@dev html]# git push origin master

Exit the Vagrant machine after the changes are pushed.

6. Connect to and verify the changes made on the development intranet website from the
Vagrant host, tower.

[root@tower webapp]# curl http://localhost:8000
Welcome to Web App 2.0

7. Deploy the changes to the production intranet website by executing the playbook,
intranet-prod.yml using the ansible.cfg configuration and inventory file.

8. Connect to and verify that the changes made on the development intranet website have
been propagated to the production intranet website running on servera.

9. Run lab ansible-vagrant-lab grade on workstation to grade your work.

[student@workstation ~]$ lab ansible-vagrant-lab grade

Chapter 12. Implementing Ansible in a DevOps Environment

418 DO407-A2.3-en-2-20170725

Solution
In this lab, you will modify and publish web content using Vagrant and Ansible.

Outcomes

You should be able modify web content on a development website running on a Vagrant machine
and deploy the changes to a production server using Ansible.

Before you begin

The development team you just joined is hosting their intranet development web server on a
Vagrant machine. Vagrant uses the ansible provisioner in conjunction with the intranet-
dev.yml file to provision this Vagrant machine.

In addition, to streamline the process of pushing web content to the intranet production web
server, servera, the team is making use of an ansible.cfg configuration file, inventory
inventory file, and an intranet-prod.yml playbook. They are storing everything in a Git
repository so that a new team member can just check out the project and have everything they
need to work on the development web server and then push code to the production web server.

You have been assigned the task of updating the /var/www/html/index.html so that it
contains the message "Welcome to Web App 2.0".

Before you begin, reset tower. Then, log in to workstation and run lab ansible-vagrant-
lab setup to install the Vagrant software, create the Git repository, as well as install and
configure the Git software.

[student@workstation ~]$ lab ansible-vagrant-lab setup

Steps

1. Log in to tower as the root user and install the Ansible software so it will be available for
use by the Vagrant ansible provisioner.

[root@tower ~]# yum install -y ansible
Loaded plugins: langpacks, search-disabled-repos
Resolving Dependencies
--> Running transaction check
...output omitted
Dependency Installed:
 libgnome-keyring.x86_64 0:3.8.0-3.el7 perl-Error.noarch 1:0.17020-2.el7
 perl-Git.noarch 0:1.8.3.1-5.el7
 perl-TermReadKey.x86_64 0:2.30-20.el7 python-crypto.x86_64 0:2.6-4.el7
 python-ecdsa.noarch 0:0.11-3.el7ost
 python-httplib2.noarch 0:0.7.7-3.el7 python-keyczar.noarch 0:0.71c-2.el7
 python-paramiko.noarch 0:1.15.1-1.el7
 python-pyasn1.noarch 0:0.1.6-2.el7 sshpass.x86_64 0:1.05-1.el7.rf

Complete!

2. Create a working directory for the Vagrant web application environment.

[root@tower ~]# mkdir -p vagrant/webapp
[root@tower ~]# cd vagrant/webapp

3. Clone the Vagrant intranet development environment from the Git repository on
workstation using the following command.

Solution

DO407-A2.3-en-2-20170725 419

[root@tower webapp]# git clone student@workstation:/var/git/vagrantwebapp.git .

Start the Vagrant machine that hosts the intranet development web server.

3.1. Clone the Vagrant environment from the vagrantwebapp.git Git repo.

[root@tower webapp]# git clone student@workstation:/var/git/vagrantwebapp.git .
Cloning into 'vagrantwebapp'...
The authenticity of host 'workstation (172.25.250.254)' can't be established.
ECDSA key fingerprint is 84:fc:5e:82:a8:4f:bb:f3:c0:06:61:77:ad:a5:e5:b9.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'workstation,172.25.250.254' (ECDSA) to the list of
 known hosts.
remote: Counting objects: 16, done.
remote: Compressing objects: 100% (10/10), done.
remote: Total 16 (delta 1), reused 16 (delta 1)
Receiving objects: 100% (16/16), done.
Resolving deltas: 100% (1/1), done.

3.2. Start the Vagrant machine.

[root@tower webapp]# vagrant up
Bringing machine 'default' up with 'libvirt' provider...
==> default: Box 'rhel7.1' could not be found. Attempting to find and install...
 default: Box Provider: libvirt
...output omitted
RUNNING HANDLER [restart firewalld] **
changed: [default]

PLAY RECAP ***
default : ok=11 changed=10 unreachable=0 failed=0

4. Connect to and verify the contents on the development intranet website from the Vagrant
host, tower.

[root@tower webapp]# curl http://localhost:8000
Welcome to Web App 1.0

5. Update the development intranet website by modifying the /var/www/html/index.html
file on the Vagrant machine. Commit the change and push the changes to the Git repository
using the following commands executed from /var/www/html directory on the Vagrant
machine.

[root@dev html]# git commit -am 'New web app version'
[root@dev html]# git push origin master

Exit the Vagrant machine after the changes are pushed.

5.1. Log in to the Vagrant machine.

[root@tower webapp]# vagrant ssh
Last login: Fri Apr 29 10:30:04 2016 from 192.168.121.1

Chapter 12. Implementing Ansible in a DevOps Environment

420 DO407-A2.3-en-2-20170725

5.2. Become the root user.

[vagrant@dev ~]$ sudo -i

5.3. Change to the development website's document root directory.

[root@dev ~]# cd /var/www/html

5.4. Modify the index.html file so it contains the message "Welcome to Web App 2.0".

Welcome to Web App 2.0

5.5. Commit and push the change to the Git repository.

[root@dev html]# git commit -am 'New web app version'
 1 file changed, 1 insertion(+), 1 deletion(-)
[root@dev html]# git push origin master
Counting objects: 5, done.
Writing objects: 100% (3/3), 262 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To ssh://student@workstation/var/git/webapp.git
 1d0ad93..6f75595 master -> master

5.6. Exit the Vagrant machine.

[root@dev html]# exit
logout
[vagrant@dev ~]$ exit
logout
Connection to 192.168.121.56 closed.

6. Connect to and verify the changes made on the development intranet website from the
Vagrant host, tower.

[root@tower webapp]# curl http://localhost:8000
Welcome to Web App 2.0

7. Deploy the changes to the production intranet website by executing the playbook,
intranet-prod.yml using the ansible.cfg configuration and inventory file.

[root@tower webapp]# cat ansible.cfg
[defaults]
inventory = inventory
host_key_checking = False
[root@tower webapp]# cat inventory
servera.lab.example.com
[root@tower webapp]# ansible-playbook intranet-prod.yml

PLAY [intranet services for production] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

Solution

DO407-A2.3-en-2-20170725 421

TASK [latest httpd version installed] **
ok: [servera.lab.example.com]

TASK [latest firewalld version installed] **************************************
ok: [servera.lab.example.com]

TASK [httpd enabled and started] ***
ok: [servera.lab.example.com]

TASK [firewalld enabled and started] ***
ok: [servera.lab.example.com]

TASK [firewalld permits http service] **
ok: [servera.lab.example.com]

TASK [get source] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=7 changed=1 unreachable=0 failed=0

8. Connect to and verify that the changes made on the development intranet website have
been propagated to the production intranet website running on servera.

[root@tower webapp]# curl http://servera
Welcome to Web App 2.0

9. Run lab ansible-vagrant-lab grade on workstation to grade your work.

[student@workstation ~]$ lab ansible-vagrant-lab grade

Chapter 12. Implementing Ansible in a DevOps Environment

422 DO407-A2.3-en-2-20170725

Summary

In this chapter, you learned:

• The Vagrant software requires a box, a provider, and a Vagrantfile to create a Vagrant
machine.

• Vagrantfile is used to configure a Vagrant machine.

• Vagrant provisioners automate software installation and system configuration after a Vagrant
machine has been built from a box image.

• Vagrant's ansible provisioner automates the provisioning of a Vagrant machine through
execution of Ansible on the Vagrant host.

• Vagrant's ansible_local provisioner automates the provisioning of a Vagrant machine
through execution of Ansible on the Vagrant machine.

DO407-A2.3-en-2-20170725 423

TRAINING

CHAPTER 13

COMPREHENSIVE REVIEW:
AUTOMATION WITH ANSIBLE

Overview

Goal Demonstrate skills learned in this course by installing,
optimizing, and configuring Ansible for the management of
managed hosts.

Sections • Comprehensive Review

Lab • Lab: Deploying Ansible

• Lab: Creating Playbooks

• Lab: Creating Roles and using Dynamic Inventories

• Lab: Optimizing Ansible

• Lab: Deploying Ansible Tower and Executing Jobs

Chapter 13. Comprehensive Review: Automation with Ansible

424 DO407-A2.3-en-2-20170725

Comprehensive Review

Objective
After completing this section, students should be able to demonstrate proficiency with
knowledge and skills learned in Automation with Ansible .

Reviewing Automation with Ansible
Before beginning the comprehensive review for this course, students should be comfortable with
the topics covered in each chapter.

Students can refer to earlier sections in the textbook for extra study.

Chapter 1, Introducing Ansible
Describe the terminology and architecture of Ansible.

• Describe Ansible concepts, reference architecture, and use cases.

• Install Ansible.

Chapter 2, Deploying Ansible
Configure Ansible and run ad hoc commands.

• Describe Ansible inventory concepts and build a static inventory.

• Manage Ansible configuration files.

• Run Ansible ad hoc commands.

• Manage dynamic inventory.

Chapter 3, Implementing Playbooks
Write Ansible plays and execute a playbook.

• Write a basic Ansible Playbook and run it using the ansible-playbook command.

• Write and run a more sophisticated Ansible Playbook using multiple plays and privilege
escalation.

Chapter 4, Managing Variables and Inclusions
To describe variable scope and precedence, manage variables and facts in a play, and manage
inclusions.

• Manage variables in Ansible projects

• Manage Facts in Playbooks

• Include variables and tasks from external files into a playbook

Chapter 5, Implementing Task Control
Manage task control, handlers, and tags in Ansible playbooks

• Construct conditionals and loops in a playbook

• Implement handlers in a playbook

• Implement tags in a playbook

Reviewing Automation with Ansible

DO407-A2.3-en-2-20170725 425

• Resolve errors in a playbook

Chapter 6, Implementing Jinja2 Templates
Implement a Jinja2 template

• Describe Jinja2 templates

• Implement Jinja2 templates

Chapter 7, Implementing Roles
Create and manage roles

• Describe the structure and behavior of a role

• Create a role

• Deploy roles with Ansible Galaxy

Chapter 8, Optimizing Ansible
Tune how Ansible executes plays and tasks using host patterns, delegation, and parallelism

• Specify managed hosts for plays and ad hoc commands using host patterns

• Configure delegation in a playbook

• Configure parallelism in Ansible

Chapter 9, Implementing Ansible Vault
Manage encryption with Ansible Vault.

• Create, edit, rekey, encrypt, and decrypt files.

• Run a playbook with Ansible Vault.

Important
The material on Ansible Vault is not revisited in this chapter. Students wishing to
review it, especially in preparation for the EX407 certification exam, should look at the
exercises in Chapter 9, Implementing Ansible Vault.

Chapter 10, Troubleshooting Ansible
Troubleshoot playbooks and managed hosts.

• Troubleshoot playbooks

• Troubleshoot managed hosts

Chapter 11, Implementing Ansible Tower
Explain what Ansible Tower is and demonstrate a basic ability to navigate and use its web user
interface.

• Describe the architecture, use cases, and installation requirements of Ansible Tower.

• Install a new Ansible Tower on a single node using the setup.sh script.

• Navigate and describe the Ansible Tower web user interface, and successfully launch a job
using the demo job template, project, credential, and inventory.

Chapter 13. Comprehensive Review: Automation with Ansible

426 DO407-A2.3-en-2-20170725

Chapter 12, Implementing Ansible in a DevOps Environment
Implement Ansible in a DevOps environment using Vagrant.

• Describe Ansible in a DevOps environment and provision Vagrant machines.

• Deploy Vagrant in a DevOps environment.

Lab: Deploying Ansible

DO407-A2.3-en-2-20170725 427

Lab: Deploying Ansible

In this review, you will install Ansible on workstation and use it as a control node and configure
it for connections to the managed hosts servera and serverb. Use ad hoc commands to
perform actions on the managed hosts.

Outcomes

You should be able to:

• Install Ansible.

• Use ad hoc commands to perform actions on managed hosts.

Before you begin

Save any work that you want to keep on your machines. When you have saved any data you want
to keep, reset all of the virtual machines.

If you did not reset all of your virtual machines at the end of the last lab, do so now. This may
take a few minutes.

Log in as the student user on workstation and run lab ansible-deploy-cr setup. This
script ensures that the managed hosts, servera and serverb, are reachable on the network.
The script creates a directory structure for the lab in the student's home directory.

[student@workstation ~]$ lab ansible-deploy-cr setup

Instructions

Install and configure Ansible on workstation, and ensure that you meet the following criteria.
Demonstrate that you can construct the ad hoc commands specified in the list of criteria in order
to modify the managed hosts and verify that the modifications work as expected.

• Install Ansible on workstation so that it can serve as the control node.

• On the control node, create an inventory file, /home/student/ansible-deploy-cr/
inventory/hosts, containing a group called dev. This group should consist of the managed
hosts servera.lab.example.com and serverb.lab.example.com.

• Create the Ansible configuration file in /home/student/ansible-deploy-cr/
ansible.cfg. The configuration file should point to the inventory file created in /home/
student/ansible-deploy-cr/inventory.

• Execute an ad hoc command using privilege escalation to modify the contents of the /etc/
motd file on servera and serverb so that it contains the string Managed by Ansible\n.
Use devops as the remote user.

• Execute an ad hoc command to verify that the contents of the /etc/motd file on servera
and serverb are identical.

Evaluation

From workstation, run the lab ansible-deploy-cr script with the grade argument
to confirm success on this exercise. Correct any reported failures and rerun the script until
successful.

Chapter 13. Comprehensive Review: Automation with Ansible

428 DO407-A2.3-en-2-20170725

[student@workstation ~]$ lab ansible-deploy-cr grade

Solution

DO407-A2.3-en-2-20170725 429

Solution
In this review, you will install Ansible on workstation and use it as a control node and configure
it for connections to the managed hosts servera and serverb. Use ad hoc commands to
perform actions on the managed hosts.

Outcomes

You should be able to:

• Install Ansible.

• Use ad hoc commands to perform actions on managed hosts.

Before you begin

Save any work that you want to keep on your machines. When you have saved any data you want
to keep, reset all of the virtual machines.

If you did not reset all of your virtual machines at the end of the last lab, do so now. This may
take a few minutes.

Log in as the student user on workstation and run lab ansible-deploy-cr setup. This
script ensures that the managed hosts, servera and serverb, are reachable on the network.
The script creates a directory structure for the lab in the student's home directory.

[student@workstation ~]$ lab ansible-deploy-cr setup

Instructions

Install and configure Ansible on workstation, and ensure that you meet the following criteria.
Demonstrate that you can construct the ad hoc commands specified in the list of criteria in order
to modify the managed hosts and verify that the modifications work as expected.

• Install Ansible on workstation so that it can serve as the control node.

• On the control node, create an inventory file, /home/student/ansible-deploy-cr/
inventory/hosts, containing a group called dev. This group should consist of the managed
hosts servera.lab.example.com and serverb.lab.example.com.

• Create the Ansible configuration file in /home/student/ansible-deploy-cr/
ansible.cfg. The configuration file should point to the inventory file created in /home/
student/ansible-deploy-cr/inventory.

• Execute an ad hoc command using privilege escalation to modify the contents of the /etc/
motd file on servera and serverb so that it contains the string Managed by Ansible\n.
Use devops as the remote user.

• Execute an ad hoc command to verify that the contents of the /etc/motd file on servera
and serverb are identical.

Steps

1. Install Ansible on workstation so that it can serve the control node.

[student@workstation ~]$ sudo yum -y install ansible
We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

Chapter 13. Comprehensive Review: Automation with Ansible

430 DO407-A2.3-en-2-20170725

 #1) Respect the privacy of others.
 #2) Think before you type.
 #3) With great power comes great responsibility.

[sudo] password for student: student

2. On the control node, create an inventory file, /home/student/ansible-deploy-
cr/inventory/hosts, containing a group called dev. This group should consist of the
managed hosts servera.lab.example.com and serverb.lab.example.com.

2.1. Use the vim text editor to create and edit the inventory file /home/student/
ansible-deploy-cr/inventory/hosts.

[student@workstation ~]$ cd /home/student/ansible-deploy-cr/inventory/
[student@workstation inventory]$ vim hosts

2.2. Add the following entries to the file to create the dev host group and members
servera.lab.example.com and serverb.lab.example.com. Save the changes
and exit the text editor.

[dev]
servera.lab.example.com
serverb.lab.example.com

3. Create the Ansible configuration file in /home/student/ansible-deploy-cr/
ansible.cfg. The configuration file should point to the inventory file created in /home/
student/ansible-deploy-cr/inventory.

3.1. Use the vim text editor to create and edit the ansible configuration file /home/
student/ansible-deploy-cr/ansible.cfg.

[student@workstation inventory]$ cd ..
[student@workstation ansible-deploy-cr]$ vim ansible.cfg

3.2. Add the following entries to the file to point to the inventory directory /home/
student/ansible-deploy-cr/inventory. Save the changes and exit the text
editor.

[defaults]
inventory=/home/student/ansible-deploy-cr/inventory

4. Execute an ad hoc command using privilege escalation to modify the contents of the /etc/
motd file on servera and serverb so that it contains the string Managed by Ansible
\n. Use devops as the remote user.

4.1. From the directory /home/student/ansible-deploy-cr, execute an ad hoc
command using privilege escalation to modify the contents of the /etc/motd file on
servera and serverb, so that it contains the string Managed by Ansible\n. Use
devops as the remote user.

[student@workstation ansible-deploy-cr]$ ansible dev -m copy -a
 'content="Managed by Ansible\n" dest=/etc/motd' -b -u devops

Solution

DO407-A2.3-en-2-20170725 431

serverb.lab.example.com | SUCCESS => {
 "changed": true,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "65a4290ee5559756ad04e558b0e0c4e3",
 "mode": "0644",
 "owner": "root",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 19,
 "src": "/home/devops/.ansible/tmp/ansible-tmp-1463700139.62-268323083587449/
source",
 "state": "file",
 "uid": 0
}
servera.lab.example.com | SUCCESS => {
 "changed": true,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "65a4290ee5559756ad04e558b0e0c4e3",
 "mode": "0644",
 "owner": "root",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 19,
 "src": "/home/devops/.ansible/tmp/ansible-tmp-1463700139.63-258952343613886/
source",
 "state": "file",
 "uid": 0
}

5. Execute an ad hoc command to verify that the contents of the /etc/motd file on servera
and serverb are identical.

[student@workstation ansible-deploy-cr]$ ansible dev -m command -a "cat /etc/motd"
servera.lab.example.com | SUCCESS | rc=0 >>
Managed by Ansible

serverb.lab.example.com | SUCCESS | rc=0 >>
Managed by Ansible

Evaluation

From workstation, run the lab ansible-deploy-cr script with the grade argument
to confirm success on this exercise. Correct any reported failures and rerun the script until
successful.

[student@workstation ~]$ lab ansible-deploy-cr grade

Chapter 13. Comprehensive Review: Automation with Ansible

432 DO407-A2.3-en-2-20170725

Lab: Creating Playbooks

In this review, you will create three playbooks in the Ansible project directory, /home/student/
ansible-playbooks-cr. One playbook will ensure that lftp is installed on systems that should
be FTP clients, one playbook will ensure that vsftpd is installed and configured on systems that
should be FTP servers, and one playbook (site.yml) will run both of the other playbooks.

Outcomes

You should be able to:

• Create and execute playbooks to perform tasks on managed hosts.

• Utilize Jinja2 templates, variables, and handlers in playbooks.

Before you begin

Set up your computers for this exercise by logging into workstation as student, and run the
following command:

[student@workstation ~]$ lab ansible-playbooks-cr setup

Instructions

Create a static inventory in ansible-playbooks-cr/inventory/hosts with
serverc.lab.example.com in the group ftpclients, and serverb.lab.example.com
and serverd.lab.example.com in the group ftpservers. Create an ansible-
playbooks-cr/ansible.cfg file which configures your Ansible project to use this inventory.
(You may find it useful to look at the system's /etc/ansible/ansible.cfg file for help with
syntax.)

Configure your Ansible project to connect to hosts in the inventory using the remote user,
devops, and the sudo method for privilege escalation. You have SSH keys to log in as devops
already configured. The devops user does not need a password for privilege escalation with
sudo.

Create a playbook named ftpclient.yml in the ansible-playbooks-cr directory that
contains a play targeting hosts in the inventory group ftpclients. It should make sure the lftp
package is installed.

Create a second playbook named ansible-vsftpd.yml in the ansible-playbooks-cr
directory that contains a play targeting hosts in the inventory group ftpservers. It should be
written as follows:

• You have a configuration file for vsftpd generated from a Jinja2 template. Create a
directory for templates, ansible-playbooks-cr/templates, and copy the provided
vsftpd.conf.j2 file into it. Also create the directory ansible-playbooks-cr/vars.
Copy into that directory the provided defaults-template.yml file, which contains default
variable settings used to complete that template when it is deployed.

• Create a variable file, ansible-playbooks-cr/vars/vars.yml, that sets three variables:

Variable Value

vsftpd_packages vsftpd

DO407-A2.3-en-2-20170725 433

Variable Value

vsftpd_service vsftpd

vsftpd_config_file /etc/vsftpd/vsftpd.conf

• In your ansible-vsftpd.yml playbook, make sure that you use vars_files to include the
files of variables in the ansible-playbooks-cr/vars directory in your play.

• In the play in ansible-vsftpd.yml, create tasks which:

1. Ensure that the packages listed by the variable {{ vsftpd_packages }} are installed.

2. Ensure that the services listed by the variable {{ vsftpd_service }} are started and
enabled to start at boot time.

3. Use the template module to deploy the templates/vsftpd.conf.j2 template to
the location defined by the {{ vsftpd_config_file }} variable. The file should be
owned by user root, group root, have octal file permissions 0600, and an SELinux type
of etc_t. Notify a handler that restarts vsftpd if this task cause a change.

4. Ensure that the firewalld package is installed and that the service is started and enabled.
Ensure that firewalld has been configured to immediately and permanently allow
connections to the ftp service.

• In your ansible-vsftpd.yml playbook, create a handler to restart the services listed by the
variable {{ vsftpd_service }} when notified.

Create a third playbook, site.yml, in the ansible-playbooks-cr directory. This playbook
should include the plays from the other two playbooks by containing exactly two lines:

- include: ansible-vsftpd.yml
- include: ftpclients.yml

You are encouraged to follow recommended playbook practices by naming all your plays and
tasks. The playbooks should be written using appropriate modules, and should be able to be
rerun safely. The playbooks should not make unnecessary changes to the systems.

Remember to use the ansible-doc command to help you find modules and information on how
to use them.

When done, you should use ansible-playbook site.yml to check your work before running
the grading script. You may also run the individual playbooks separately to make sure that they
function.

Important
If you are having trouble with your site.yml playbook, make sure that both
ansible-vsftpd.yml and ftpclients.yml have indentation consistent with each
other.

Chapter 13. Comprehensive Review: Automation with Ansible

434 DO407-A2.3-en-2-20170725

Evaluation

As the student user on workstation, run the lab ansible-playbooks-cr grade
command to confirm success of this exercise. Correct any reported failures and rerun the script
until successful.

[student@workstation ~]$ lab ansible-playbooks-cr grade

Cleanup

Run the lab ansible-playbooks-cr cleanup command to clean up the lab tasks on
serverb, serverc, and serverd.

[student@workstation ~]$ lab ansible-playbooks-cr cleanup

Solution

DO407-A2.3-en-2-20170725 435

Solution
In this review, you will create three playbooks in the Ansible project directory, /home/student/
ansible-playbooks-cr. One playbook will ensure that lftp is installed on systems that should
be FTP clients, one playbook will ensure that vsftpd is installed and configured on systems that
should be FTP servers, and one playbook (site.yml) will run both of the other playbooks.

Outcomes

You should be able to:

• Create and execute playbooks to perform tasks on managed hosts.

• Utilize Jinja2 templates, variables, and handlers in playbooks.

Before you begin

Set up your computers for this exercise by logging into workstation as student, and run the
following command:

[student@workstation ~]$ lab ansible-playbooks-cr setup

Instructions

Create a static inventory in ansible-playbooks-cr/inventory/hosts with
serverc.lab.example.com in the group ftpclients, and serverb.lab.example.com
and serverd.lab.example.com in the group ftpservers. Create an ansible-
playbooks-cr/ansible.cfg file which configures your Ansible project to use this inventory.
(You may find it useful to look at the system's /etc/ansible/ansible.cfg file for help with
syntax.)

Configure your Ansible project to connect to hosts in the inventory using the remote user,
devops, and the sudo method for privilege escalation. You have SSH keys to log in as devops
already configured. The devops user does not need a password for privilege escalation with
sudo.

Create a playbook named ftpclient.yml in the ansible-playbooks-cr directory that
contains a play targeting hosts in the inventory group ftpclients. It should make sure the lftp
package is installed.

Create a second playbook named ansible-vsftpd.yml in the ansible-playbooks-cr
directory that contains a play targeting hosts in the inventory group ftpservers. It should be
written as follows:

• You have a configuration file for vsftpd generated from a Jinja2 template. Create a
directory for templates, ansible-playbooks-cr/templates, and copy the provided
vsftpd.conf.j2 file into it. Also create the directory ansible-playbooks-cr/vars.
Copy into that directory the provided defaults-template.yml file, which contains default
variable settings used to complete that template when it is deployed.

• Create a variable file, ansible-playbooks-cr/vars/vars.yml, that sets three variables:

Variable Value

vsftpd_packages vsftpd

vsftpd_service vsftpd

vsftpd_config_file /etc/vsftpd/vsftpd.conf

Chapter 13. Comprehensive Review: Automation with Ansible

436 DO407-A2.3-en-2-20170725

• In your ansible-vsftpd.yml playbook, make sure that you use vars_files to include the
files of variables in the ansible-playbooks-cr/vars directory in your play.

• In the play in ansible-vsftpd.yml, create tasks which:

1. Ensure that the packages listed by the variable {{ vsftpd_packages }} are installed.

2. Ensure that the services listed by the variable {{ vsftpd_service }} are started and
enabled to start at boot time.

3. Use the template module to deploy the templates/vsftpd.conf.j2 template to
the location defined by the {{ vsftpd_config_file }} variable. The file should be
owned by user root, group root, have octal file permissions 0600, and an SELinux type
of etc_t. Notify a handler that restarts vsftpd if this task cause a change.

4. Ensure that the firewalld package is installed and that the service is started and enabled.
Ensure that firewalld has been configured to immediately and permanently allow
connections to the ftp service.

• In your ansible-vsftpd.yml playbook, create a handler to restart the services listed by the
variable {{ vsftpd_service }} when notified.

Create a third playbook, site.yml, in the ansible-playbooks-cr directory. This playbook
should include the plays from the other two playbooks by containing exactly two lines:

- include: ansible-vsftpd.yml
- include: ftpclients.yml

You are encouraged to follow recommended playbook practices by naming all your plays and
tasks. The playbooks should be written using appropriate modules, and should be able to be
rerun safely. The playbooks should not make unnecessary changes to the systems.

Remember to use the ansible-doc command to help you find modules and information on how
to use them.

When done, you should use ansible-playbook site.yml to check your work before running
the grading script. You may also run the individual playbooks separately to make sure that they
function.

Important
If you are having trouble with your site.yml playbook, make sure that both
ansible-vsftpd.yml and ftpclients.yml have indentation consistent with each
other.

Steps

1. As the student user on workstation, create the inventory file /home/student/
ansible-playbooks-cr/inventory/hosts, containing serverc.lab.example.com
in the group ftpclients, and serverb.lab.example.com and
serverd.lab.example.com in the group ftpservers.

1.1. Change directory into the Ansible project directory, /home/student/ansible-
playbooks-cr, created by the setup script.

Solution

DO407-A2.3-en-2-20170725 437

[student@workstation ~]$ cd /home/student/ansible-playbooks-cr

1.2. Create an inventory subdirectory, inventory.

[student@workstation ansible-playbooks-cr]$ mkdir inventory

1.3. Within the /home/student/ansible-playbooks-cr/inventory directory, create
the static inventory file, hosts, by opening it with a text editor.

[student@workstation ansible-playbooks-cr]$ vim inventory/hosts

1.4. Populate the hosts file with the following contents:

[ftpservers]
serverb.lab.example.com
serverd.lab.example.com

[ftpclients]
serverc.lab.example.com

1.5. Save the changes to the newly created inventory file.

2. Create the Ansible configuration file, /home/student/ansible-playbooks-cr/
ansible.cfg, and populate it with the necessary entries to configure the Ansible project
to use the newly created inventory, connect to managed hosts as the devops user, and to
utilize privilege escalation using sudo as the root user.

2.1. Create the Ansible configuration file, /home/student/ansible-playbooks-cr/
ansible.cfg, by opening it with a text editor.

[student@workstation ansible-playbooks-cr]$ vim ansible.cfg

2.2. Configure the inventory, remote user, and privilege escalation method and user for the
Ansible project by adding the following entries in the ansible.cfg configuration file.

[defaults]
remote_user = devops
inventory = ./inventory

[privilege_escalation]
become_user = root
become_method = sudo

2.3. Save the changes to the newly created Ansible configuration file.

3. Create the playbook, /home/student/ansible-playbooks-cr/ftpclient.yml,
containing a play targeting the hosts in the ftpclients inventory group and ensures that
the lftp is installed.

Chapter 13. Comprehensive Review: Automation with Ansible

438 DO407-A2.3-en-2-20170725

3.1. Create the playbook file, /home/student/ansible-playbooks-cr/
ftpclient.yml, by opening it with a text editor.

[student@workstation ansible-playbooks-cr]$ vim ftpclient.yml

3.2. Populate the new playbook file with a play to ensure that the lftp package is installed on
the hosts in the ftpclients inventory group by adding the following entries.

- name: ftp client installed
 hosts: ftpclients

 become: true

 tasks:
 - name: latest lftp version installed
 yum:
 name: lftp
 state: latest

3.3. Save the changes to the newly created playbook file.

4. Create a templates subdirectory in the project working directory to hold the vsftpd
configuration file provided.

4.1. Create the templates subdirectory.

[student@workstation ansible-playbooks-cr]$ mkdir templates

4.2. Download the provided vsftpd.conf.j2 file to the newly created templates
subdirectory.

[student@workstation ansible-playbooks-cr]$ curl -o templates/vsftpd.conf.j2
 http://materials.example.com/ansible-playbooks-cr/templates/vsftpd.conf.j2

5. Create a vars subdirectory in the project working directory and populate it with the
defaults-template.yml file provided.

5.1. Create the vars subdirectory.

[student@workstation ansible-playbooks-cr]$ mkdir vars

5.2. Download the provided defaults-template.yml file to the newly created vars
subdirectory.

[student@workstation ansible-playbooks-cr]$ curl -o vars/defaults-template.yml
 http://materials.example.com/ansible-playbooks-cr/vars/defaults-template.yml

6. Create a vars.yml variable definition file in the vars subdirectory to define the following
three variables and their values.

Solution

DO407-A2.3-en-2-20170725 439

Variable Value

vsftpd_packages vsftpd

vsftpd_service vsftpd

vsftpd_config_file /etc/vsftpd/vsftpd.conf

6.1. Create the /home/student/ansible-playbooks-cr/vars/vars.yml file.

[student@workstation ansible-playbooks-cr]$ vim vars/vars.yml

6.2. Populate the vars.yml file with the following variable definitions.

vsftpd_packages: vsftpd
vsftpd_service: vsftpd
vsftpd_config_file: /etc/vsftpd/vsftpd.conf

6.3. Save the changes to the newly created variable definition file.

7. Using the previously created Jinja2 template and variable definition files, create a second
playbook, /home/student/ansible-playbooks-cr/ansible-vsftpd.yml, to
configure the vsftpd service on the hosts in the ftpservers inventory group.

7.1. Create the playbook file, /home/student/ansible-playbooks-cr/ansible-
vsftpd.yml by opening it with a text editor.

[student@workstation ansible-playbooks-cr]$ vim ansible-vsftpd.yml

7.2. Populate the new playbook file with the following entries in order to configure the
vsftpd service on the hosts in the ftpservers inventory group.

- name: FTP server is installed
 hosts:
 - ftpservers

 become: true

 vars_files:
 - vars/defaults-template.yml
 - vars/vars.yml

 tasks:
 - name: Packages are installed
 yum:
 name: '{{ vsftpd_packages }}'
 state: installed

 - name: Ensure service is started
 service:
 name: '{{ item }}'
 state: started
 enabled: true
 with_items: '{{ vsftpd_service }}'

Chapter 13. Comprehensive Review: Automation with Ansible

440 DO407-A2.3-en-2-20170725

 - name: Configuration file is installed
 template:
 src: templates/vsftpd.conf.j2
 dest: '{{ vsftpd_config_file }}'
 owner: root
 group: root
 mode: '0600'
 setype: etc_t
 notify: restart vsftpd

 - name: firewalld is installed
 yum:
 name: firewalld
 state: present

 - name: firewalld is started and enabled
 service:
 name: firewalld
 state: started
 enabled: yes

 - name: Open ftp port in firewall
 firewalld:
 service: ftp
 permanent: true
 state: enabled
 immediate: yes

 handlers:

 - name: restart vsftpd
 service:
 name: "{{ item }}"
 state: restarted
 with_items: "{{ vsftpd_service }}"

7.3. Save the changes to the newly created playbook file.

8. Create a third playbook, /home/student/ansible-playbooks-cr/site.yml, and
include the plays from the two playbooks created previously, ftpclient.yml and
ansible-vsftpd.yml.

8.1. Create the playbook file, /home/student/ansible-playbooks-cr/site.yml, by
opening it with a text editor.

[student@workstation ansible-playbooks-cr]$ vim site.yml

8.2. Populate the new playbook file with the following entries in order to include the plays
from the other two playbooks.

Play for FTP clients
 - include: ftpclient.yml

 # Play for FTP servers
 - include: ansible-vsftpd.yml

8.3. Save the changes to the newly created playbook file.

Solution

DO407-A2.3-en-2-20170725 441

9. Execute the /home/student/ansible-playbooks-cr/site.yml playbook to verify
that it performs the desired tasks on the managed hosts.

[student@workstation ansible-playbooks-cr]$ ansible-playbook site.yml

Evaluation

As the student user on workstation, run the lab ansible-playbooks-cr grade
command to confirm success of this exercise. Correct any reported failures and rerun the script
until successful.

[student@workstation ~]$ lab ansible-playbooks-cr grade

Cleanup

Run the lab ansible-playbooks-cr cleanup command to clean up the lab tasks on
serverb, serverc, and serverd.

[student@workstation ~]$ lab ansible-playbooks-cr cleanup

Chapter 13. Comprehensive Review: Automation with Ansible

442 DO407-A2.3-en-2-20170725

Lab: Creating Roles and Using Dynamic
Inventory

In this review, you will convert the ansible-vsftpd.yml playbook from the preceding exercise
into a role, and then use that role in a new playbook that will also run some additional tasks. You
will also be asked to install and use a dynamic inventory script, which will be provided to you.

Outcomes

You should be able to:

• Create a role for configuring vsftpd by converting an existing playbook.

• Create and execute a playbook by including a role.

• Use dynamic inventory to execute a playbook.

Before you begin

Log in to workstation as student using student as the password.

On workstation, run the lab ansible-roles-cr setup script. This script ensures
that the host, serverb.lab.example.com, serverc.lab.example.com, and
serverd.lab.example.com are reachable on the network. The script also checks that Ansible
is installed on workstation and creates a directory structure for the lab environment and
required Ansible configuration files.

[student@workstation ~]$ lab ansible-roles-cr setup

Instructions

Start a new Ansible project by copying the files from the previous review's directory, /home/
student/ansible-playbooks-cr, to the new project directory, /home/student/ansible-
roles-cr, created by the setup script.

Download the dynamic inventory script from http://materials.example.com/comp-
review/dynamic/crinventory.py. Configure your Ansible project to use both the
downloaded dynamic inventory script and the existing static inventory, ansible-roles-cr/
inventory/hosts.

Convert ansible-vsftpd.yml into the role ansible-vsftpd, as specified below:

• Use ansible-galaxy to create the directory structure for the role ansible-vsftpd in the
ansible-roles-cr/roles directory of your Ansible project.

• The file ansible-roles-cr/vars/defaults-template.yml contains default variables
for the role that should be easy to override. It should be moved to an appropriate location in
the role.

• The file ansible-roles-cr/vars/vars.yml contains regular variables for the role. It
should be moved to an appropriate location in the role.

• The template ansible-roles-cr/templates/vsftpd.conf.j2 should be moved to an
appropriate location in the role.

DO407-A2.3-en-2-20170725 443

• The tasks and handlers in the ansible-vsftpd.yml playbook should be appropriately
installed in the role.

• You may edit the role's meta/main.yml file to set the author, description, and license fields
(use BSD for the license). You may also edit the README.md file as you wish for completeness.

• Remove any directories in the role that you are not using.

Create a new playbook, vsftpd-configure.yml, in the ansible-roles-cr directory. It
should be written as follows:

• It should contain a play targeting hosts in the inventory group ftpservers.

• The play should set the following variables:

Variable Value

vsftpd_anon_root /mnt/share

vsftpd_local_root /mnt/share

• The play should apply the role ansible-vsftpd.

• The play should include the following tasks in the specified order:

1. Use the command module to create a GPT disk label on /dev/vdb, that starts 1 MiB from
the beginning of the device and ends at the end of the device. Use the ansible-doc
command to learn how to use the creates argument to skip this task if /dev/vdb1 has
already been created. This is to avoid destructive repartitioning of the device. Use the
following command to create the partition:

parted --script /dev/vdb mklabel gpt mkpart primary 1MiB 100%

2. Ensure a /mnt/share directory exists for use as a mount point.

3. Use ansible-doc -l to find a module that can make a file system on a block device.
Use ansible-doc to learn how to use that module. Add a task to the playbook that uses
it to create an XFS file system on /dev/vdb1. Do not force creation of that file system if
one exists already.

4. Add a task to ensure that /etc/fstab mounts the device /dev/vdb1 on /mnt/share
at boot, and that it is currently mounted. (Use ansible-doc to find a module that can
help with this.) If this task changes, notify the ansible-vsftpd role's handler that
restarts vsftpd.

5. Add a task that ensures that the /mnt/share directory is owned by the root user and
the root group, has the SELinux type defined in the {{ vsftpd_setype }} variable
from the role, and has octal permissions of 0755. (This has to be done after the file
system is mounted to set the permissions on the mounted file system and not on the
placeholder mount point directory.)

6. Make sure that a file named README exists in the directory specified by
{{ vsftpd_anon_root }} containing the string "Welcome to the FTP server
at serverX.lab.example.com" where serverX.lab.example.com is the actual
fully-qualified hostname for that server. This file should have octal permissions of 0644

Chapter 13. Comprehensive Review: Automation with Ansible

444 DO407-A2.3-en-2-20170725

and the SELinux type specified by the {{ vsftpd_setype }} variable. (Hint: look at
the copy or template modules and the available Ansible facts in order to solve this
problem.)

Important
You may find it useful to debug your role by testing it in a playbook that does not
contain the extra tasks or playbook variables listed above, but only contains a play that
targets hosts in the group ftpservers, and applies the role.

Once you have confirmed that a simplified playbook using only the role works just like
the original ansible-vsftpd.yml playbook, you can build the complete vsftpd-
configure.yml playbook by adding the additional variables and tasks specified
above.

Change the ansible-roles-cr/site.yml playbook to use the new vsftpd-
configure.yml playbook instead of ansible-vsftpd.yml.

You are encouraged to follow recommended playbook practices by naming all your plays and
tasks. The playbooks should be written using appropriate modules, and should be able to be
rerun safely. The playbooks should not make unnecessary changes to the systems.

When done, use ansible-playbook site.yml to check your work before running the grading
script. You may also run the individual playbooks separately to make sure they function.

Important
If you are having trouble with your site.yml playbook, make sure that both vsftpd-
configure.yml and ftpclients.yml have indentation consistent with each other.

Evaluation

From workstation, run the lab ansible-roles-cr grade command to confirm success on
this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab ansible-roles-cr grade

Cleanup

Run the lab ansible-roles-cr cleanup command to clean up the lab tasks on servera
and serverb.

[student@workstation ~]$ lab ansible-roles-cr cleanup

Solution

DO407-A2.3-en-2-20170725 445

Solution

In this review, you will convert the ansible-vsftpd.yml playbook from the preceding exercise
into a role, and then use that role in a new playbook that will also run some additional tasks. You
will also be asked to install and use a dynamic inventory script, which will be provided to you.

Outcomes

You should be able to:

• Create a role for configuring vsftpd by converting an existing playbook.

• Create and execute a playbook by including a role.

• Use dynamic inventory to execute a playbook.

Before you begin

Log in to workstation as student using student as the password.

On workstation, run the lab ansible-roles-cr setup script. This script ensures
that the host, serverb.lab.example.com, serverc.lab.example.com, and
serverd.lab.example.com are reachable on the network. The script also checks that Ansible
is installed on workstation and creates a directory structure for the lab environment and
required Ansible configuration files.

[student@workstation ~]$ lab ansible-roles-cr setup

Instructions

Start a new Ansible project by copying the files from the previous review's directory, /home/
student/ansible-playbooks-cr, to the new project directory, /home/student/ansible-
roles-cr, created by the setup script.

Download the dynamic inventory script from http://materials.example.com/comp-
review/dynamic/crinventory.py. Configure your Ansible project to use both the
downloaded dynamic inventory script and the existing static inventory, ansible-roles-cr/
inventory/hosts.

Convert ansible-vsftpd.yml into the role ansible-vsftpd, as specified below:

• Use ansible-galaxy to create the directory structure for the role ansible-vsftpd in the
ansible-roles-cr/roles directory of your Ansible project.

• The file ansible-roles-cr/vars/defaults-template.yml contains default variables
for the role that should be easy to override. It should be moved to an appropriate location in
the role.

• The file ansible-roles-cr/vars/vars.yml contains regular variables for the role. It
should be moved to an appropriate location in the role.

• The template ansible-roles-cr/templates/vsftpd.conf.j2 should be moved to an
appropriate location in the role.

• The tasks and handlers in the ansible-vsftpd.yml playbook should be appropriately
installed in the role.

Chapter 13. Comprehensive Review: Automation with Ansible

446 DO407-A2.3-en-2-20170725

• You may edit the role's meta/main.yml file to set the author, description, and license fields
(use BSD for the license). You may also edit the README.md file as you wish for completeness.

• Remove any directories in the role that you are not using.

Create a new playbook, vsftpd-configure.yml, in the ansible-roles-cr directory. It
should be written as follows:

• It should contain a play targeting hosts in the inventory group ftpservers.

• The play should set the following variables:

Variable Value

vsftpd_anon_root /mnt/share

vsftpd_local_root /mnt/share

• The play should apply the role ansible-vsftpd.

• The play should include the following tasks in the specified order:

1. Use the command module to create a GPT disk label on /dev/vdb, that starts 1 MiB from
the beginning of the device and ends at the end of the device. Use the ansible-doc
command to learn how to use the creates argument to skip this task if /dev/vdb1 has
already been created. This is to avoid destructive repartitioning of the device. Use the
following command to create the partition:

parted --script /dev/vdb mklabel gpt mkpart primary 1MiB 100%

2. Ensure a /mnt/share directory exists for use as a mount point.

3. Use ansible-doc -l to find a module that can make a file system on a block device.
Use ansible-doc to learn how to use that module. Add a task to the playbook that uses
it to create an XFS file system on /dev/vdb1. Do not force creation of that file system if
one exists already.

4. Add a task to ensure that /etc/fstab mounts the device /dev/vdb1 on /mnt/share
at boot, and that it is currently mounted. (Use ansible-doc to find a module that can
help with this.) If this task changes, notify the ansible-vsftpd role's handler that
restarts vsftpd.

5. Add a task that ensures that the /mnt/share directory is owned by the root user and
the root group, has the SELinux type defined in the {{ vsftpd_setype }} variable
from the role, and has octal permissions of 0755. (This has to be done after the file
system is mounted to set the permissions on the mounted file system and not on the
placeholder mount point directory.)

6. Make sure that a file named README exists in the directory specified by
{{ vsftpd_anon_root }} containing the string "Welcome to the FTP server
at serverX.lab.example.com" where serverX.lab.example.com is the actual
fully-qualified hostname for that server. This file should have octal permissions of 0644
and the SELinux type specified by the {{ vsftpd_setype }} variable. (Hint: look at
the copy or template modules and the available Ansible facts in order to solve this
problem.)

Solution

DO407-A2.3-en-2-20170725 447

Important
You may find it useful to debug your role by testing it in a playbook that does not
contain the extra tasks or playbook variables listed above, but only contains a play that
targets hosts in the group ftpservers, and applies the role.

Once you have confirmed that a simplified playbook using only the role works just like
the original ansible-vsftpd.yml playbook, you can build the complete vsftpd-
configure.yml playbook by adding the additional variables and tasks specified
above.

Change the ansible-roles-cr/site.yml playbook to use the new vsftpd-
configure.yml playbook instead of ansible-vsftpd.yml.

You are encouraged to follow recommended playbook practices by naming all your plays and
tasks. The playbooks should be written using appropriate modules, and should be able to be
rerun safely. The playbooks should not make unnecessary changes to the systems.

When done, use ansible-playbook site.yml to check your work before running the grading
script. You may also run the individual playbooks separately to make sure they function.

Important
If you are having trouble with your site.yml playbook, make sure that both vsftpd-
configure.yml and ftpclients.yml have indentation consistent with each other.

Steps

1. On workstation, populate the new Ansible project directory, /home/student/ansible-
roles-cr, with the contents of the Ansible project directory from the previous review, /
home/student/ansible-playbooks-cr.

1.1. On workstation as the student user, change to the new Ansible project directory
created by the setup script, /home/student/ansible-roles-cr.

[student@workstation ~]$ cd /home/student/ansible-roles-cr/

1.2. Copy the contents of the previous review's Ansible project directory, /home/student/
ansible-playbooks-cr, to the new Ansible project directory.

[student@workstation ansible-roles-cr]$ cp -r ../ansible-playbooks-cr/* .

2. Configure the new Ansible project to use both the dynamic inventory available at http://
materials.example.com/comp-review/dynamic/crinventory.py as well as the
static inventory, ansible-roles-cr/inventory/hosts.

2.1. Download the provided dynamic inventory script to inventory/crinventory.py.

[student@workstation ansible-roles-cr]$ curl -o inventory/crinventory.py http://
materials.example.com/comp-review/dynamic/crinventory.py

Chapter 13. Comprehensive Review: Automation with Ansible

448 DO407-A2.3-en-2-20170725

2.2. Make the dynamic inventory script executable.

[student@workstation ansible-roles-cr]$ chmod +x inventory/crinventory.py

3. Convert the ansible-vsftpd.yml playbook into the role ansible-vsftpd.

3.1. Using ansible-galaxy, create the directory structure for the new ansible-vsftpd
role in the roles subdirectory of the Ansible project directory.

[student@workstation ansible-roles-cr]$ ansible-galaxy init --offline -p roles
 ansible-vsftpd
- ansible-vsftpd was created successfully

3.2. Using tree, verify the directory structure created for the new role.

[student@workstation ansible-roles-cr]$ tree roles
roles
└── ansible-vsftpd
 ├── defaults
 │ └── main.yml
 ├── handlers
 │ └── main.yml
 ├── meta
 │ └── main.yml
 ├── README.md
 ├── tasks
 │ └── main.yml
 ├── tests
 │ ├── inventory
 │ └── test.yml
 └── vars
 └── main.yml

3.3. Copy the variable definitions in the vars/defaults-template.yml to the roles/
ansible-vsftpd/defaults/main.yml file.

[student@workstation ansible-roles-cr]$ cp vars/defaults-template.yml roles/
ansible-vsftpd/defaults/main.yml

3.4. Copy the variable definitions in the vars/vars.yml to the roles/ansible-vsftpd/
vars/main.yml file.

[student@workstation ansible-roles-cr]$ cp vars/vars.yml roles/ansible-vsftpd/
vars/main.yml

3.5. Copy the templates/vsftpd.conf.j2 to the roles/ansible-vsftpd/
templates/vsftpd.conf.j2 file.

Solution

DO407-A2.3-en-2-20170725 449

Important
Depending on the Ansible version you are using, you might encounter a
situation where ansible-galaxy command does not create all the required
subdirectories. For example, the files and templates directories might be
missing. If this is the case, simply create those two directories manually using
the mkdir command.

[student@workstation ansible-roles-cr]$ mkdir roles/ansible-vsftpd/templates; cp
 templates/vsftpd.conf.j2 roles/ansible-vsftpd/templates/

3.6. Copy the tasks in the ansible-vsftpd.yml playbook into the roles/ansible-
vsftpd/tasks/main.yml file. The roles/ansible-vsftpd/tasks/main.yml file
should have the following contents after you are done.

tasks file for ansible-vsftpd
- name: Packages are installed
 yum:
 name: '{{ vsftpd_packages }}'
 state: installed

- name: Ensure service is started
 service:
 name: '{{ item }}'
 state: started
 enabled: true
 with_items: '{{ vsftpd_service }}'

- name: Configuration file is installed
 template:
 src: vsftpd.conf.j2
 dest: '{{ vsftpd_config_file }}'
 owner: root
 group: root
 mode: '0600'
 setype: etc_t
 notify: restart vsftpd

- name: firewalld is installed
 yum:
 name: firewalld
 state: present

- name: firewalld is started and enabled
 service:
 name: firewalld
 state: started
 enabled: yes

- name: Open ftp port in firewall
 firewalld:
 service: ftp
 permanent: true
 state: enabled
 immediate: yes

Chapter 13. Comprehensive Review: Automation with Ansible

450 DO407-A2.3-en-2-20170725

3.7. Copy the handlers in the ansible-vsftpd.yml playbook into the roles/ansible-
vsftpd/handlers/main.yml file. The roles/ansible-vsftpd/handlers/
main.yml file should have the following contents after you are done.

handlers file for ansible-vsftpd
- name: restart vsftpd
 service:
 name: "{{ item }}"
 state: restarted
 with_items: "{{ vsftpd_service }}"

4. Modify the contents of the role's meta/main.yml file.

4.1. Change the value of the author entry to "Red Hat Training".

 author: Red Hat Training

4.2. Change the value of the description entry to "example role for DO407".

 description: example role for DO407

4.3. Change the value of the company entry to "Red Hat".

 company: Red Hat

4.4. Change the value of the license: entry to "BSD".

 license: BSD

5. Modify the contents of the role's README.md file so that it provides pertinent information
regarding the role. After modification, the file should contain the following contents.

ansible-vsftpd
=========

Example ansible-vsftpd role from Red Hat's "Automation with Ansible" (DO407) course.

Requirements

None.

Role Variables

* defaults/main.yml contains variables used to configure the vsftpd.conf template
* vars/main.yml contains the name of the vsftpd service, the name of the RPM
 package, and the location of the service's configuration file

Dependencies

Solution

DO407-A2.3-en-2-20170725 451

None.

Example Playbook

 - hosts: servers
 roles:
 - ansible-vsftpd

License

BSD

Author Information

Red Hat (training@redhat.com)

6. Remove the unused directories from the new role.

[student@workstation ansible-roles-cr]$ rm -rf roles/ansible-vsftpd/tests

7. Create the new playbook vsftpd-configure.yml. It should contain the following
contents.

- name: Install and configure vsftpd
 hosts: ftpservers

 become: true

 vars:
 vsftpd_anon_root: /mnt/share/
 vsftpd_local_root: /mnt/share/

 roles:
 - ansible-vsftpd

 tasks:

 - name: /dev/vdb1 is partitioned
 command: >
 creates=/dev/vdb1
 parted --script /dev/vdb mklabel gpt mkpart primary 1MiB 100%

 - name: XFS file system exists on /dev/vdb1
 filesystem:
 dev: /dev/vdb1
 fstype: xfs
 force: no

 - name: anon_root mount point exists
 file:
 path: '{{ vsftpd_anon_root }}'
 state: directory

 - name: /dev/vdb1 is mounted on anon_root
 mount:
 name: '{{ vsftpd_anon_root }}'

Chapter 13. Comprehensive Review: Automation with Ansible

452 DO407-A2.3-en-2-20170725

 src: /dev/vdb1
 fstype: xfs
 state: mounted
 dump: '1'
 passno: '2'
 notify: restart vsftpd

 - name: Make sure permissions on mounted fs are correct
 file:
 path: '{{ vsftpd_anon_root }}'
 owner: root
 group: root
 mode: '0755'
 setype: "{{ vsftpd_setype }}"
 state: directory

 - name: Copy README to the ftp anon_root
 copy:
 dest: '{{ vsftpd_anon_root }}/README'
 content: "Welcome to the FTP server at {{ ansible_fqdn }}\n"
 setype: '{{ vsftpd_setype }}'

8. Change the site.yml playbook to use the newly created vsftpd-configure.yml
playbook instead of the ansible-vsftpd.yml playbook. The file should contain the
following contents after you are done.

 # Play for FTP clients
 - include: ftpclient.yml

 # Play for FTP servers
 - include: vsftpd-configure.yml

9. Verify that the site.yml playbook works as intended by executing it with ansible-
playbook.

[student@workstation ansible-roles-cr]$ ansible-playbook site.yml

Evaluation

From workstation, run the lab ansible-roles-cr grade command to confirm success on
this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab ansible-roles-cr grade

Cleanup

Run the lab ansible-roles-cr cleanup command to clean up the lab tasks on servera
and serverb.

[student@workstation ~]$ lab ansible-roles-cr cleanup

Lab: Optimizing Ansible

DO407-A2.3-en-2-20170725 453

Lab: Optimizing Ansible

In this review, you will deploy an updated web page to two web servers running behind a load
balancer. You will use the serial keyword to push this update to one server at a time, and
delegate_to to remove web servers from the load balancer pool when being updated and to
add them back again when the update completes.

The HAProxy load balancer is preconfigured on serverc.lab.example.com, and Apache
HTTPD is preconfigured on servera.lab.example.com and serverb.lab.example.com.

After upgrading the web content, the web servers must be rebooted, one at a time so that site
availability is unaffected, before adding them back to the load balancer pool.

Outcomes

You should be able to:

• Delegate tasks to other hosts.

• Asynchronously run jobs in parallel.

• Use rolling updates.

Before you begin

Log in to workstation as student using student as the password.

On workstation, run the lab ansible-optimize-cr setup script. It tests whether
Ansible is installed on workstation and creates a directory structure for the lab environment
with an inventory file. The script preconfigures servera.lab.example.com and
serverb.lab.example.com as web servers and configures serverc.lab.example.com
as the load balancer server using a round-robin algorithm. The script also creates a templates
directory under the lab's working directory.

The inventory file /home/student/ansible-optimize-cr/inventory/hosts lists
servera.lab.example.com and serverb.lab.example.com as managed hosts, which are
members of the [webservers] group and also lists serverc.lab.example.com as part of
the [lbserver] group.

[student@workstation ~]$ lab ansible-optimize-cr setup

Instructions

Configure a playbook and supporting materials on workstation that meet the following
criteria:

• As student on workstation, download the web page template located at http://
materials.example.com/jinja2/index-ver1.html.j2 to the /home/student/
ansible-optimize-cr/templates/ directory. It should have the following content:

<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to {{ inventory_hostname }}.

Chapter 13. Comprehensive Review: Automation with Ansible

454 DO407-A2.3-en-2-20170725

</h1>
<h2>A new feature added.</h2>
</body>
</html>

• Create a playbook named upgrade_webserver.yml in /home/student/ansible-
optimize-cr/. The playbook should run on the host group, webservers. It should configure
privilege escalation using the remote user, devops. It should use the serial method to push
to one host at a time.

In addition, the playbook should execute the following tasks in the specified order:

1. Use the haproxy Ansible module to disable the web server in the load balancer pool
named app. The host should be referred to using the inventory_hostname variable.
Use the socket, /var/lib/haproxy/stats. Wait until the server reports a status of
MAINT. The task needs to be delegated to the server from the [lbserver] inventory
group.

2. Deploy the index-ver1.html.j2 template to /var/www/html/index.html. Register
the pageupgrade variable when this task runs.

3. Reboot the server. Set an asynchronous delay of one second, do not poll, and ignore
errors. Execute this task when pageupgrade changes.

4. Use the wait_for module to wait for the server to reboot. Determine this by waiting for
the sshd (port 22) to open. Use the inventory_hostname variable to determine which
host to wait for. Delay 25 seconds before starting to poll, and time out after 200 seconds.
Do not escalate privileges. Delegate this task to 127.0.0.1. Like the previous task, execute
this task when pageupgrade changes.

5. Use the wait_for module to wait for the web server to be started. Use the
inventory_hostname variable to determine which host to wait for, and poll port 80.
Time out after 20 seconds.

6. Use the haproxy Ansible module to re-enable the web server in the load balancer pool
named app. Use the same information as specified for the first task in this playbook.

• Run the completed playbook and manually confirm that everything worked. You can
use the curl command to retrieve pages through the load balancer at http://
serverc.lab.example.com.

Note that the template file you deployed customized the document root for the web site so
that it will be clear which back-end server you are viewing through the load balancer on any
given page reload.

Evaluation

From workstation, run the lab ansible-optimize-cr script with the grade argument to
assess this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab ansible-optimize-cr grade

Cleanup

Run the lab ansible-optimize-cr cleanup command to clean up the lab tasks on
servera and serverb.

DO407-A2.3-en-2-20170725 455

[student@workstation ~]$ lab ansible-optimize-cr cleanup

Chapter 13. Comprehensive Review: Automation with Ansible

456 DO407-A2.3-en-2-20170725

Solution

In this review, you will deploy an updated web page to two web servers running behind a load
balancer. You will use the serial keyword to push this update to one server at a time, and
delegate_to to remove web servers from the load balancer pool when being updated and to
add them back again when the update completes.

The HAProxy load balancer is preconfigured on serverc.lab.example.com, and Apache
HTTPD is preconfigured on servera.lab.example.com and serverb.lab.example.com.

After upgrading the web content, the web servers must be rebooted, one at a time so that site
availability is unaffected, before adding them back to the load balancer pool.

Outcomes

You should be able to:

• Delegate tasks to other hosts.

• Asynchronously run jobs in parallel.

• Use rolling updates.

Before you begin

Log in to workstation as student using student as the password.

On workstation, run the lab ansible-optimize-cr setup script. It tests whether
Ansible is installed on workstation and creates a directory structure for the lab environment
with an inventory file. The script preconfigures servera.lab.example.com and
serverb.lab.example.com as web servers and configures serverc.lab.example.com
as the load balancer server using a round-robin algorithm. The script also creates a templates
directory under the lab's working directory.

The inventory file /home/student/ansible-optimize-cr/inventory/hosts lists
servera.lab.example.com and serverb.lab.example.com as managed hosts, which are
members of the [webservers] group and also lists serverc.lab.example.com as part of
the [lbserver] group.

[student@workstation ~]$ lab ansible-optimize-cr setup

Instructions

Configure a playbook and supporting materials on workstation that meet the following
criteria:

• As student on workstation, download the web page template located at http://
materials.example.com/jinja2/index-ver1.html.j2 to the /home/student/
ansible-optimize-cr/templates/ directory. It should have the following content:

<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to {{ inventory_hostname }}.
</h1>
<h2>A new feature added.</h2>
</body>

Solution

DO407-A2.3-en-2-20170725 457

</html>

• Create a playbook named upgrade_webserver.yml in /home/student/ansible-
optimize-cr/. The playbook should run on the host group, webservers. It should configure
privilege escalation using the remote user, devops. It should use the serial method to push
to one host at a time.

In addition, the playbook should execute the following tasks in the specified order:

1. Use the haproxy Ansible module to disable the web server in the load balancer pool
named app. The host should be referred to using the inventory_hostname variable.
Use the socket, /var/lib/haproxy/stats. Wait until the server reports a status of
MAINT. The task needs to be delegated to the server from the [lbserver] inventory
group.

2. Deploy the index-ver1.html.j2 template to /var/www/html/index.html. Register
the pageupgrade variable when this task runs.

3. Reboot the server. Set an asynchronous delay of one second, do not poll, and ignore
errors. Execute this task when pageupgrade changes.

4. Use the wait_for module to wait for the server to reboot. Determine this by waiting for
the sshd (port 22) to open. Use the inventory_hostname variable to determine which
host to wait for. Delay 25 seconds before starting to poll, and time out after 200 seconds.
Do not escalate privileges. Delegate this task to 127.0.0.1. Like the previous task, execute
this task when pageupgrade changes.

5. Use the wait_for module to wait for the web server to be started. Use the
inventory_hostname variable to determine which host to wait for, and poll port 80.
Time out after 20 seconds.

6. Use the haproxy Ansible module to re-enable the web server in the load balancer pool
named app. Use the same information as specified for the first task in this playbook.

• Run the completed playbook and manually confirm that everything worked. You can
use the curl command to retrieve pages through the load balancer at http://
serverc.lab.example.com.

Note that the template file you deployed customized the document root for the web site so
that it will be clear which back-end server you are viewing through the load balancer on any
given page reload.

Steps

1. From workstation as the student user, change to the directory /home/student/
ansible-optimize-cr.

[student@workstation ~]$ cd /home/student/ansible-optimize-cr

2. Because the web servers are preconfigured as part of the lab setup, use curl to browse
http://serverc.lab.example.com. Run the curl command twice to see the web
content from the web server running on servera and serverb.

[student@workstation ansible-optimize-cr]$ curl http://serverc.lab.example.com

Chapter 13. Comprehensive Review: Automation with Ansible

458 DO407-A2.3-en-2-20170725

<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to servera.lab.example.com.
</h1>
</body>
</html>

[student@workstation ansible-optimize-cr]$ curl http://serverc.lab.example.com
<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to serverb.lab.example.com.
</h1>
</body>
</html>

3. Create a new web page template named index-ver1.html.j2 under the templates
directory of the lab's working directory by downloading the web page template from
http://materials.example.com/jinja2/index-ver1.html.j2.

[student@workstation ansible-optimize-cr]$ curl -o templates/index-ver1.html.j2
 http://materials.example.com/jinja2/index-ver1.html.j2

4. Create a playbook named upgrade_webserver.yml under ~/ansible-optimize-cr.
The playbook should use privilege escalation using the remote user devops and a hosts
directive using the webservers host group.

The updates need to be pushed to one server at a time.

The contents of the upgrade_webserver.yml file should be as follows:

- name: Upgrade Webservers
 hosts: webservers
 remote_user: devops
 become: yes
 serial: 1

5. Create a task in the upgrade_webserver.yml playbook to remove the web server from
the load balancer pool. Use the haproxy Ansible module to remove it from the HAProxy
load balancer. The task needs to be delegated to a server from the [lbserver] inventory
group.

The haproxy module is used to disable a back-end server from HAProxy using socket
commands. To disable a back-end server from the back-end pool named app, specify the
socket path as /var/lib/haproxy/stats, and configure wait=yes so that the task waits
until the server reports a status of MAINT.

The contents of the upgrade_webserver.yml file should be as follows:

...file content omitted...
 tasks:

Solution

DO407-A2.3-en-2-20170725 459

 - name: disable the server in haproxy
 haproxy:
 state: disabled
 backend: app
 host: "{{ inventory_hostname }}"
 socket: /var/lib/haproxy/stats
 wait: yes
 delegate_to: "{{ item }}"
 with_items: "{{ groups.lbserver }}"

6. Create a task in the upgrade_webserver.yml playbook to copy the updated page
template from the lab working directory templates/index-ver1.html.j2 to the web
servers' document root directories as the file /var/www/html/index.html. Also register
a variable, pageupgrade, which would be later used to invoke other tasks.

...file content omitted...
 - name: upgrade the page
 template:
 src: "templates/index-ver1.html.j2"
 dest: "/var/www/html/index.html"
 register: pageupgrade

7. Create a task in the upgrade_webserver.yml playbook to restart the web servers using
an asynchronous task that will not wait more than 1 second for the task to complete, and
that ensures tasks are not polled from completion.

Set ignore_errors to true and execute the task if the previously registered
pageupgrade variable has changed.

7.1. Create a task in the upgrade_webserver.yml playbook to reboot the web server by
adding a task to the playbook. Use the command module to shut down the machine.

...file content omitted...
 - name: restart machine
 shell: /bin/sleep 5 && shutdown -r now "Ansible updates triggered"

7.2. Continue editing the task in the upgrade_webserver.yml playbook.

Use the async keyword to specify a 1 second wait time for task completion. Disable
polling by setting the poll parameter to 0. Set ignore_errors to true and execute
the task if the earlier registered pageupgrade variable changes. Add the following lines
in bold to the playbook:

...file content omitted...
 - name: restart machine
 shell: /bin/sleep 5 && shutdown -r now "Ansible updates triggered"
 async: 1
 poll: 0
 ignore_errors: true
 when: pageupgrade.changed

8. Create a task in the upgrade_webserver.yml playbook.

Delegate the task to localhost, and use the wait_for module to wait for the server
to be restarted. Specify the host as inventory_hostname, port as 22, state as

Chapter 13. Comprehensive Review: Automation with Ansible

460 DO407-A2.3-en-2-20170725

started, delay as 25, and timeout as 200. The task should be executed when the
variable pageupgrade has changed. Privilege escalation is not required for this task.

The task in the upgrade_webserver.yml playbook should read as follows:

...file content omitted...
 - name: wait for webserver to reboot
 wait_for:
 host: "{{ inventory_hostname }}"
 port: 22
 state: started
 delay: 25
 timeout: 200
 become: False
 delegate_to: 127.0.0.1
 when: pageupgrade.changed

9. Create a task in the upgrade_webserver.yml playbook to wait for the web server port
to open. (The httpd service should already be enabled so it is started when the machine
boots.) Specify the host as inventory_hostname, port as 80, state as started, and
timeout as 20.

 - name: wait for webserver to come up
 wait_for:
 host: "{{ inventory_hostname }}"
 port: 80
 state: started
 timeout: 20

10. Create a task in the upgrade_webserver.yml playbook to add the web server to the
load balancer pool after the upgrade of the page. Use the haproxy Ansible module to add
the server back to the HAProxy load balancer pool. The task needs to be delegated to the
serverc.lab.example.com server, which is part of the [lbserver] inventory group.

The haproxy module is used to enable a back-end server from HAProxy using socket
commands. To enable a back-end server from the backend pool named app, specify /
var/lib/haproxy/stats for socket path, and set wait to yes so that the task waits
for the server to report a status of healthy.

 - name: enable the server in haproxy
 haproxy:
 state: enabled
 backend: app
 host: "{{ inventory_hostname }}"
 socket: /var/lib/haproxy/stats
 wait: yes
 delegate_to: "{{ item }}"
 with_items: "{{ groups.lbserver }}"

11. Review the contents of the playbook upgrade-webserver.yml.

- name: Upgrade Webservers
 hosts: webservers
 remote_user: devops
 become: yes

Solution

DO407-A2.3-en-2-20170725 461

 serial: 1

 tasks:
 - name: disable the server in haproxy
 haproxy:
 state: disabled
 backend: app
 host: "{{ inventory_hostname }}"
 socket: /var/lib/haproxy/stats
 wait: yes
 delegate_to: "{{ item }}"
 with_items: "{{ groups.lbserver }}"

 - name: upgrade the page
 template:
 src: "templates/index-ver1.html.j2"
 dest: "/var/www/html/index.html"
 register: pageupgrade

 - name: restart machine
 shell: /bin/sleep 5 && shutdown -r now "Ansible updates triggered"
 async: 1
 poll: 0
 ignore_errors: true
 when: pageupgrade.changed

 - name: wait for webserver to reboot
 wait_for:
 host: "{{ inventory_hostname }}"
 port: 22
 state: started
 delay: 25
 timeout: 200
 become: False
 delegate_to: 127.0.0.1
 when: pageupgrade.changed

 - name: wait for webserver to come up
 wait_for:
 host: "{{ inventory_hostname }}"
 port: 80
 state: started
 timeout: 20

 - name: enable the server in haproxy
 haproxy:
 state: enabled
 backend: app
 host: "{{ inventory_hostname }}"
 socket: /var/lib/haproxy/stats
 wait: yes
 delegate_to: "{{ item }}"
 with_items: "{{ groups.lbserver }}"

12. Check the syntax of the playbook upgrade-webserver.yml. Resolve any syntax errors
before proceeding to the next step.

You can compare your playbook to the one available for download from http://
materials.example.com/comp-review/playbooks/ansible-optimize/
upgrade_webserver.yml or use the provided playbook in place of your own for the next
step. Check the syntax using the ansible-playbook --syntax-check command.

Chapter 13. Comprehensive Review: Automation with Ansible

462 DO407-A2.3-en-2-20170725

[student@workstation ansible-optimize-cr]$ ansible-playbook --syntax-check
 upgrade_webserver.yml

13. Run the playbook upgrade-webserver.yml to upgrade the server.

The restart task takes several minutes, so move on to the next step when it reaches that
point in executing the playbook.

[student@workstation ansible-optimize-cr]$ ansible-playbook upgrade_webserver.yml

14. From workstation, use curl to view the web link http://serverc.lab.example.com.
Run the curl command several times while the playbook is executing to verify the
webserver is still reachable and that the host changes when the playbook moves on to
reboot the other machine.

15. Wait until the remaining tasks from the playbook complete on both servera and serverb.

16. Verify the web content by browsing the website using the link http://
serverc.lab.example.com. Rerun the curl command to see the updated
pages from two different web servers, servera.lab.example.com and
serverb.lab.example.com, with the updated content.

[student@workstation ansible-optimize-cr]$ curl http://serverc.lab.example.com
<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to servera.lab.example.com.
</h1>
<h2>A new feature added.</h2>
</body>
</html>

[student@workstation ansible-optimize-cr]$ curl http://serverc.lab.example.com
<html>
<head><title>My Page</title></head>
<body>
<h1>
Welcome to serverb.lab.example.com.
</h1>
<h2>A new feature added.</h2>
</body>
</html>

Evaluation

From workstation, run the lab ansible-optimize-cr script with the grade argument to
assess this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab ansible-optimize-cr grade

Solution

DO407-A2.3-en-2-20170725 463

Cleanup

Run the lab ansible-optimize-cr cleanup command to clean up the lab tasks on
servera and serverb.

[student@workstation ~]$ lab ansible-optimize-cr cleanup

Chapter 13. Comprehensive Review: Automation with Ansible

464 DO407-A2.3-en-2-20170725

Lab: Deploying Ansible Tower and Executing
Jobs

In this review, you will deploy Ansible Tower on tower.lab.example.com and then launch a
job using a job template.

Outcome

You should be able to:

• Deploy Ansible Tower.

• Launch a job in Ansible Tower using a job template.

Before you begin

Reset the tower system before beginning this lab.

Log in to tower as root using redhat as the password.

On workstation, run the lab ansible-tower-cr setup script. This script ensures that the
tower host, tower.lab.example.com, is reachable on the network. The script also checks that
Ansible is installed on workstation.

[student@workstation ~]$ lab ansible-tower-cr setup

Instructions

Install Ansible Tower on tower.lab.example.com, and then launch a job using the job
template Demo Job Template. Read through the entire list before you begin.

• Install Ansible Tower on tower.lab.example.com using the setup bundle ansible-
tower-setup-bundle.el7.tar.gz, available at http://content.example.com/
ansible2.3/x86_64/dvd/ansible-tower/ansible-tower-setup-
bundle-3.1.1-1.el7.tar.gz. A valid license file, Ansible-Tower-license.txt, is
available at http://materials.example.com/Ansible-Tower-license.txt.

Firefox is available on workstation so that you can access Ansible Tower's web-based user
interface once it has been installed.

The following parameters should be set in the inventory file used for installing Ansible
Tower. Note that this will set the admin password for your Ansible Tower configuration to
redhat.

Ansible Tower configuration

Parameters Values

admin_password redhat

pg_password redhat

rabbitmq_password redhat

• Once Ansible Tower has been successfully installed, as the student user on workstation,
change directory to the /home/student/ansible-tower-cr Ansible project directory

DO407-A2.3-en-2-20170725 465

created by the setup script, and execute the mkdemoproject.yml playbook against the
tower.lab.example.com managed host using the following command.

[student@workstation ~]$ cd /home/student/ansible-tower-cr; ansible-playbook
 mkdemoproject.yml

• Log in to Ansible Tower as the admin user and launch a job using the job template Demo Job
Template.

Evaluation

In the Tower web interface, determine the outcome of the job execution. When the job has
completed successfully, the STATUS value changes to Successful. Review the output of the
job execution. You should see that the msg module was used to successfully display a "Hello
World!" message.

Chapter 13. Comprehensive Review: Automation with Ansible

466 DO407-A2.3-en-2-20170725

Solution

In this review, you will deploy Ansible Tower on tower.lab.example.com and then launch a
job using a job template.

Outcome

You should be able to:

• Deploy Ansible Tower.

• Launch a job in Ansible Tower using a job template.

Before you begin

Reset the tower system before beginning this lab.

Log in to tower as root using redhat as the password.

On workstation, run the lab ansible-tower-cr setup script. This script ensures that the
tower host, tower.lab.example.com, is reachable on the network. The script also checks that
Ansible is installed on workstation.

[student@workstation ~]$ lab ansible-tower-cr setup

Instructions

Install Ansible Tower on tower.lab.example.com, and then launch a job using the job
template Demo Job Template. Read through the entire list before you begin.

• Install Ansible Tower on tower.lab.example.com using the setup bundle ansible-
tower-setup-bundle.el7.tar.gz, available at http://content.example.com/
ansible2.3/x86_64/dvd/ansible-tower/ansible-tower-setup-
bundle-3.1.1-1.el7.tar.gz. A valid license file, Ansible-Tower-license.txt, is
available at http://materials.example.com/Ansible-Tower-license.txt.

Firefox is available on workstation so that you can access Ansible Tower's web-based user
interface once it has been installed.

The following parameters should be set in the inventory file used for installing Ansible
Tower. Note that this will set the admin password for your Ansible Tower configuration to
redhat.

Ansible Tower configuration

Parameters Values

admin_password redhat

pg_password redhat

rabbitmq_password redhat

• Once Ansible Tower has been successfully installed, as the student user on workstation,
change directory to the /home/student/ansible-tower-cr Ansible project directory
created by the setup script, and execute the mkdemoproject.yml playbook against the
tower.lab.example.com managed host using the following command.

Solution

DO407-A2.3-en-2-20170725 467

[student@workstation ~]$ cd /home/student/ansible-tower-cr; ansible-playbook
 mkdemoproject.yml

• Log in to Ansible Tower as the admin user and launch a job using the job template Demo Job
Template.

Steps

1. On tower, as the root user, change to the directory, and download the Ansible Tower
setup bundle located at http://content.example.com/ansible2.3/x86_64/dvd/
ansible-tower/ansible-tower-setup-bundle-3.1.1-1.el7.tar.gz.

[root@tower ~]# curl -O -J http://content.example.com/ansible2.3/x86_64/dvd/ansible-
tower/ansible-tower-setup-bundle-3.1.1-1.el7.tar.gz

2. Extract the setup bundle, ansible-tower-setup-bundle-3.1.1-1.el7.tar.gz.

[root@tower ~]# tar xzf ansible-tower-setup-bundle-3.1.1-1.el7.tar.gz

3. Change into the directory containing the extracted contents.

[root@tower ~]# cd ansible-tower-setup-bundle-3.1.1-1.el7

4. Set the passwords for the Ansible Tower administrator account, database user account, and
messaging user account to redhat. Do this by modifying their respective entries in the
inventory file used by the Tower installer playbook.

[root@tower ansible-tower-setup-bundle-3.1.1-1.el7]# grep password inventory
admin_password='redhat'
pg_password='redhat'
rabbitmq_password='redhat'

5. Run the Ansible Tower installer by executing the setup.sh script. The script may take
up to 30 minutes to complete. Ignore the errors in the script output. They are related to
verification checks performed by the installer playbook.

[root@tower ansible-tower-setup-bundle-3.1.1-1.el7]# ./setup.sh
[warn] Will install bundled Ansible
Loaded plugins: langpacks, search-disabled-repos
Examining bundle/repos/epel/ansible-2.2.1.0-1.el7.noarch.rpm:
 ansible-2.2.1.0-1.el7.noarch
Marking bundle/repos/epel/ansible-2.2.1.0-1.el7.noarch.rpm to be installed
... Output omitted ...
The setup process completed successfully.
Setup log saved to /var/log/tower/setup-2017-02-27-10:52:44.log

6. Once the installer has completed successfully, exit the console session on the tower system.

[root@tower ansible-tower-setup-bundle-3.1.1-1.el7]# exit

Chapter 13. Comprehensive Review: Automation with Ansible

468 DO407-A2.3-en-2-20170725

7. Launch the Firefox web browser from workstation and connect to your Ansible Tower at
https://tower.lab.example.com. Firefox warns you that the Ansible Tower server's
security certificate is not secure. Add and confirm the security exception for the self-signed
certificate.

8. Log in to the Tower web interface as the Tower administrator using the admin account and
the redhat password.

9. Once you have successfully logged in to the Tower web interface for the first time, you are
prompted to enter a license and accept the end user license agreement.

Upload the Ansible Tower license and accept the end user license agreement.

9.1. On workstation, download the Ansible Tower license provided at http://
materials.example.com/Ansible-Tower-license.txt.

9.2. In the Tower web interface, click BROWSE and then select the license file downloaded
earlier.

9.3. Select the checkbox next to I agree to the End User License Agreement to indicate
acceptance.

9.4. Click SUBMIT to submit the license and accept the license agreement.

10. Once Ansible Tower has been successfully installed, as the student user on workstation,
change directory to the /home/student/ansible-tower-cr Ansible project directory
created by the setup script and execute the mkdemoproject.yml playbook against the
tower.lab.example.com managed host using the following command. This installs a
demo job template on the Tower server.

[student@workstation ~]$ cd /home/student/ansible-tower-cr; ansible-playbook
 mkdemoproject.yml

11. In the Tower web interface, identify the Job Template created during the Ansible Tower
installation. Click TEMPLATES in the top navigation menu to display the list of existing Job
Templates. You should see a Job Template named Demo Job Template, created during the
Ansible Tower installation.

12. Launch a job using the Demo Job Template Job Template.

12.1. Exit the template details view by clicking the TEMPLATES link in the breadcrumb
navigation menu near the top of the screen.

12.2.On the TEMPLATES screen, click the rocket icon under the ACTIONS column of the
Demo Job Template row. This launches a job using the parameters configured in the
Demo Job Template template and redirects you to the job details screen. As the job
executes, the details of the job execution, as well as its output, is displayed.

Evaluation

In the Tower web interface, determine the outcome of the job execution. When the job has
completed successfully, the STATUS value changes to Successful. Review the output of the

Solution

DO407-A2.3-en-2-20170725 469

job execution. You should see that the msg module was used to successfully display a "Hello
World!" message.

470

DO407-A2.3-en-2-20170725 471

TRAINING

APPENDIX A

ANSIBLE LIGHTBULB
LICENSING

Appendix A. Ansible Lightbulb Licensing

472 DO407-A2.3-en-2-20170725

Ansible Lightbulb License

Portions of this course were adapted from the Ansible Lightbulb project. The original material
from that project is available from https://github.com/ansible/lightbulb under the following MIT
License:

Copyright 2017 Red Hat, Inc.

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

https://github.com/ansible/lightbulb

	Automation with Ansible
	Table of Contents
	Document Conventions
	Notes and Warnings

	Introduction
	Automation with Ansible
	Orientation to the Classroom Environment
	Internationalization
	Language Codes Reference

	Chapter 1. Introducing Ansible
	Overview of Ansible
	Quiz: Ansible Architecture
	Installing Ansible
	Guided Exercise: Installing Ansible
	Summary

	Chapter 2. Deploying Ansible
	Building an Ansible Inventory
	Quiz: Building an Ansible Inventory
	Managing Ansible Configuration Files
	Guided Exercise: Managing Ansible Configuration Files
	Running Ad Hoc Commands
	Guided Exercise: Running Ad Hoc Commands
	Managing Dynamic Inventories
	Guided Exercise: Managing Dynamic Inventories
	Lab: Deploying Ansible
	Summary

	Chapter 3. Implementing Playbooks
	Writing and Running Playbooks
	Guided Exercise: Writing and Running Playbooks
	Implementing Multiple Plays
	Guided Exercise: Implementing Multiple Plays
	Lab: Implementing Playbooks
	Summary

	Chapter 4. Managing Variables and Inclusions
	Managing Variables
	Guided Exercise: Managing Variables
	Managing Facts
	Guided Exercise: Managing Facts
	Managing Inclusions
	Guided Exercise: Managing Inclusions
	Lab: Managing Variables and Inclusions
	Summary

	Chapter 5. Implementing Task Control
	Constructing Flow Control
	Guided Exercise: Constructing Flow Control
	Implementing Handlers
	Guided Exercise: Implementing Handlers
	Implementing Tags
	Guided Exercise: Implementing Tags
	Handling Errors
	Guided Exercise: Handling Errors
	Lab: Implementing Task Control
	Summary

	Chapter 6. Implementing Jinja2 Templates
	Describing Jinja2 Templates
	Quiz: Describing Jinja2 Templates
	Implementing Jinja2 Templates
	Guided Exercise: Implementing Jinja2 Templates
	Lab: Implementing Jinja2 Templates
	Summary

	Chapter 7. Implementing Roles
	Describing Role Structure
	Quiz: Describing Role Structure
	Creating Roles
	Guided Exercise: Creating Roles
	Deploying Roles with Ansible Galaxy
	Guided Exercise: Deploying Roles with Ansible Galaxy
	Lab: Implementing Roles
	Summary

	Chapter 8. Optimizing Ansible
	Selecting Hosts with Host Patterns
	Guided Exercise: Selecting Hosts with Host Patterns
	Configuring Delegation
	Guided Exercise: Configuring Delegation
	Configuring Parallelism
	Guided Exercise: Configuring Parallelism
	Lab: Optimizing Ansible
	Summary

	Chapter 9. Implementing Ansible Vault
	Configuring Ansible Vault
	Guided Exercise: Configuring Ansible Vault
	Executing with Ansible Vault
	Guided Exercise: Executing with Ansible Vault
	Lab: Implementing Ansible Vault
	Summary

	Chapter 10. Troubleshooting Ansible
	Troubleshooting Playbooks
	Guided Exercise: Troubleshooting Playbooks
	Troubleshooting Ansible Managed Hosts
	Guided Exercise: Troubleshooting Ansible Managed Hosts
	Lab: Troubleshooting Ansible
	Summary

	Chapter 11. Implementing Ansible Tower
	Introduction to Ansible Tower
	Quiz: Introduction to Ansible Tower
	Installing Ansible Tower
	Guided Exercise: Installing Ansible Tower
	Navigating the Ansible Tower Web Interface
	Guided Exercise: Navigating the Ansible Tower Web Interface
	Quiz: Implementing Ansible Tower
	Summary

	Chapter 12. Implementing Ansible in a DevOps Environment
	Provisioning Vagrant Machines
	Guided Exercise: Provisioning Vagrant Machines
	Deploying Vagrant in a DevOps Environment
	Guided Exercise: Deploying Vagrant in a DevOps Environment
	Lab: Implementing Ansible in a DevOps Environment
	Summary

	Chapter 13. Comprehensive Review: Automation with Ansible
	Comprehensive Review
	Lab: Deploying Ansible
	Lab: Creating Playbooks
	Lab: Creating Roles and Using Dynamic Inventory
	Lab: Optimizing Ansible
	Lab: Deploying Ansible Tower and Executing Jobs

	Appendix A. Ansible Lightbulb Licensing
	Ansible Lightbulb License

